Принцип работы и разновидности преобразователей напряжения

Повышающе-понижающая ступень DC/DC-преобразования

Повышающе-понижающие DC/DC-преобразователи должны обеспечивать одноступенчатое преобразование для входных напряжений от шины аккумуляторной батареи в широком диапазоне (рис. 3) и гарантировать при этом стабильное напряжение на выходе. Для такого преобразования используется несколько топологий . Пример на рис. 4в показывает использование микросхемы контроллера повышающе-понижающего DC/DC-преобразователя LM5175 с четырьмя ключами. Это вызвано тем, что, благодаря своей архитектуре, он отличается более высокой эффективностью (КПД) и широкими возможностями по управлению питанием.

DC/DC-преобразователь, выполненный на базе контроллера LM5175, отличается широким диапазоном входного напряжения VIN и, благодаря возможности работы с четырьмя ключами, может как повышать, так и понижать входное напряжение. При этом он способен обеспечивать стабилизированное выходное напряжение даже в том случае, если его входное напряжение равно выходному. Упрощенная схема и временные диаграммы переключения ключей во всех режимах работы преобразователя показаны на рис. 5.

Рис. 5. Четырехключевой повышающе-понижающий DC/DC-преобразователь с широким диапазоном входного напряжения VIN

Когда входное напряжение выше заданного уровня выходного напряжения, рассматриваемый преобразователь работает в режиме понижения напряжения с выходным каскадом в проходном режиме. Когда входное напряжение ниже заданного уровня выходного напряжения, он работает в режиме повышения, в этом случае его входной каскад находится в режиме прямой проводимости. Когда же напряжение VIN находится близко к выходному VOUT, то для поддержания плавной или, как ее называют, бесшовной работы он чередует циклы повышения и понижения. Поскольку в режиме повышения или понижения напряжения используется только одно плечо в цикле, это позволяет избежать высоких потерь, характерных для чистого двухступенчатого преобразования.

В отличие от повышающего предварительного преобразователя, задача которого заключается только лишь в повышении уровня выходного напряжения, которое, в случае его понижения, не сможет уменьшить выходное напряжение ниже уровня VIN, повышающе-понижающий преобразователь обеспечивает устойчивость как к просадкам, так и к резким броскам входного напряжения. Для автомобильных применений с выходным напряжением выше номинального диапазона (≥16 В) повышающий напряжение преобразователь обеспечивает низкий уровень пульсаций на входе и обеспечивает, кроме того, защиту от перегрузки и короткого замыкания, а также выполняет и ограничение пускового тока. Повышающий каскад преобразователя также избавляет от необходимости использования громоздких пассивных фильтров низких частот, необходимых для подавления наложенного переменного напряжения, которое может наводиться на шине 12-В аккумуляторной батареи как следствие выпрямления выходного напряжения переменного тока автомобильного генератора. Для стабилизированных выходных напряжений, лежащих ниже номинального напряжения аккумуляторной батареи (5 и 3,3 В), топология повышающе-понижающего преобразования обеспечивает одноступенчатое решение с более высокой эффективностью, чем архитектура из двух раздельных преобразователей — предварительного повышающего и основного понижающего. Тем не менее преимущество в размерах с использованием одноступенчатых повышающе-понижающих преобразователей нивелируется по причине того, что здесь, как правило, требуется больший по габаритам фильтр подавления электромагнитных помех.

Тем не менее для автомобильных систем именно повышающе-понижающий напряжение преобразователь, показанный на рис. 5, является оптимальным решением в качестве предварительного стабилизатора напряжения. Этот преобразователь сочетает преимущества первой ступени, где он может работать в качестве повышающего преобразователя, например для борьбы с просадками напряжения (для диапазона выходного напряжения 16–24 В, рис. 4в), и обеспечивать защиту в условиях холодного пуска двигателя. Этот преобразователь также включает в себя защиту от сброса нагрузки и защиту от перегрузки по току с одновременной защитой от короткого замыкания, обычно ассоци­ируемую с особенностями функционирования понижающих преобразователей. Кроме того, он обеспечивает полное отключение входа/выхода в режиме выключения без потребления остаточных токов.

Универсальный Dc Dc преобразователь – SEPIC

SEPIC (single-ended primary-inductor converter) или преобразователь с несимметрично нагруженной первичной индуктивностью.

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

   Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на предыдущем рисунке, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке ниже.

   Внешний вид преобразователя SEPIC

Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC

Входное напряжение платы может быть в пределах 4…35 В. При этом выходное напряжение может настраиваться в пределах 1,23…32 В. Рабочая частота преобразователя 500 КГц. При незначительных размерах 50 x 25 x 12 мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3 А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10 В, то выходной ток не может быть выше 2,5 А (25 Вт). При выходном напряжении 5 В и максимальном токе 3 А мощность составит всего 15 Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйти за пределы допустимого тока.

Назначение и принцип работы

Что такое преобразователь напряжения. Так называют электронный прибор, изменяющий величину входного сигнала. Он может использоваться в качестве устройства, повышающего или понижающего его значение. Входное напряжение после преобразования может изменить как свою величину, так и частоту. Такие устройства, изменяющие постоянное напряжение (преобразовывающие его) в выходной сигнал переменного тока, получили название инверторов.

Преобразователи напряжения находят применение как в виде автономного устройства, питающего потребителей энергией переменного тока, так и могут входить в состав других изделий: систем и источников бесперебойного питания, устройств повышения постоянного напряжения до необходимой величины.

Инверторы представляют собой генераторы напряжения гармонических колебаний. Источнику постоянного тока с помощью специальной схемы управления создается режим периодического переключения полярности. В результате на выходных контактах устройства, к которым подключена нагрузка, формируется сигнал переменного напряжения. Его величину (амплитуду) и частоту определяют элементы схемы преобразователя.

Управляющее устройство (контроллер) задает частоту переключения источника и форму выходного сигнала, а его амплитуду определяют элементы выходного каскада схемы. Они рассчитаны на максимальную мощность, которую потребляет нагрузка в цепи переменного тока.

Контроллер используется и для регулирования величины выходного сигнала, которое достигается управлением длительностью импульсов (увеличение или уменьшение их ширины). Информация об изменениях величины выходного сигнала на нагрузке поступает в контроллер по цепи обратной связи, на основании которой в нем формируется управляющий сигнал на сохранение необходимых параметров. Этот метод называется ШИМ (широтно-импульсной модуляцией) сигналов.

В схемах силовых выходных ключей преобразователя напряжения 12В могут использоваться мощные составные биполярные транзисторы, полупроводниковые тиристоры, полевые транзисторы. Схемы контроллеров выполняются на микросхемах, представляющих собой уже готовые к работе устройства с необходимыми функциями (микроконтроллеры), специально разработанных для таких преобразователей.

Схема управления обеспечивает последовательность работы ключей для обеспечения на выходе инвертора сигнала, необходимого для нормальной работы устройств потребителя. Кроме того, управляющая схема должна обеспечивать симметрию полуволн выходного напряжения

Это особенно важно для схем, в которых на выходе используются повышающие импульсные трансформаторы. Для них недопустимо появление постоянной составляющей напряжения, которая может появиться при нарушении симметрии

Существует много вариантов построения схем инверторов напряжения (ИН), но выделяют из них 3 основные:

  • ИН бестрансформаторный мостовой;
  • трансформаторный ИН с нулевым проводом;
  • мостовая схема с трансформатором.

Каждая из них находит применение в своей области в зависимости от примененного в нем источника питания и требуемой выходной мощности для питания потребителей. В каждой из них должны быть предусмотрены элементы защиты и сигнализации.

Защита от понижения и повышения напряжения источника постоянного тока определяет диапазон работы инверторов «по входу». Защита от повышенного и пониженного выходного переменного напряжения необходима для нормальной работы оборудования потребителя. Диапазон срабатывания устанавливается в соответствии с требованиями используемой нагрузки. Эти виды защиты обратимые, то есть при восстановлении параметров оборудования до нормы работа может быть восстановлена.

При срабатывании защиты вследствие короткого замыкания в нагрузке или чрезмерного возрастания выходного тока перед тем, как продолжить эксплуатацию оборудования, необходим тщательный анализ причин этого события.

Преобразователь 12В является наиболее приемлемым для создания локальной электросети. Наличие большого количества автомобилей и аккумуляторных батарей 12В постоянного тока позволяет их использовать для обеспечения запросов пользователей. Такие сети можно создавать в самых различных местах, начиная от собственного авто. Они мобильны и не зависят от места стоянки.

Применение многоуровневых инверторов [ править | править код ]

Многоуровневые инверторы включают в себя матрицу силовых полупроводников и конденсаторных источников напряжения, выход которых генерирует напряжения со ступенчатыми формами сигналов. Коммутация переключателей позволяет добавлять напряжения конденсатора, которые достигают высокого напряжения на выходе, в то время как силовые полупроводники должны выдерживать только пониженные напряжения. На рисунке справа показана принципиальная схема одного фазового отрезка инверторов с различным количеством уровней, для которых действует мощность полупроводников представленных идеальным выключателем с несколькими положениями.

Двухуровневый инвертор генерирует выходное напряжение с двумя значениями (уровнями) относительно отрицательного терминала конденсатора , в то время как трехуровневый инвертор генерирует три напряжения и так далее.

Представим, что m является количеством шагов фазового напряжения относительно отрицательного терминала инвертора, тогда количество шагов в напряжении между двумя фазами загрузки k,

k = 2 m + 1 <displaystyle k=2m+1>

и количество шагов p в фазовом напряжении трехфазной нагрузки в соединении

p = 2 k − 1 <displaystyle p=2k-1>

Имеется три различные топологии для многоуровневых инверторов: зафиксированная на диод (нейтрально зафиксированная) ; зафиксированная на конденсатор (навесные конденсаторы); и каскадно-расположенный многоэлементный с отдельными источниками постоянного тока .Кроме того, несколько модуляций и стратегий управления были разработаны или приняты для многоуровневых инверторов включая следующее: многоуровневая синусоидальная модуляция длительности импульса (PWM), многоуровневое выборочное гармоническое устранение и векторная пространством модуляция (SVM).

Основные положительные стороны многоуровневых инверторов заключаются в следующем:

1) Они могут генерировать выходные напряжения с чрезвычайно низким искажением и понизить dv/dt.

2) Они тянут входной ток с очень низким искажением.

3) Они генерируют меньшее напряжение общего режима (CM), таким образом уменьшая стресс в моторных подшипниках. Кроме того, с помощью сложных методов модуляции, напряжения CM могут быть устранены.

4) Они могут работать с более низкой частотой переключения.

Топология каскадных многоуровневых инверторов

Различная топология преобразователя представленная здесь, основывается на последовательном соединении однофазных инверторов с отдельными источниками постоянного тока. Рисунок справа показывает цепь электропитания для одного участка фазы девятиуровневого инвертора с четырьмя клетками в каждой фазе. Получающееся фазовое напряжение синтезируется добавлением напряжений, сгенерированных различными участками.

Каждый однофазный инвертор полного моста генерирует три напряжения на выводе: + Vdc, 0, и — Vdc. Это стало возможным путем подключения конденсаторов последовательно с ac стороной через четыре выключателя питания. Получающееся выходное колебание напряжения переменного тока от-4 Vdc до 4 Vdc с девятью уровнями и ступенчатой формой сигнала, почти синусоидальной, даже без применения фильтров.

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Классификация

Основными критериями классификации этих приборов являются мощность, форма тока и входное напряжение. Выбор конкретной модели зависит от целей, с которыми приобретается устройство.

Для подключения к автомобильному прикуривателю используются простейшие компактные преобразователи небольшой мощности. От них могут получать питание гаджеты с низким потреблением электроэнергии (телефоны, ноутбуки, вентиляторы, фонарики).

Мощность инвертора, включаемого в прикуриватель, не должна превышать 150 Вт. В противном случае можно вывести из строя всю электропроводку автомобиля.

Преобразователи для питания приборов мощностью от 150 Вт присоединяют напрямую к клеммам аккумулятора. Чтобы снизить потери КПД, не рекомендуется использовать «крокодильчики», которые входят в комплектацию некоторых моделей. Для стабильного и надёжного подключения больше подойдут медные клеммы с винтовым соединением.

Номинальная и пиковая мощность

При выборе преобразователя следует суммировать мощность всех потребителей, которые будут к нему подключены. К полученному результату прибавляют ещё 20%, так как прибор не сможет долго работать на пределе возможностей. Кроме того, возможны потери вследствие плохого контакта в соединениях или низкого качества кабеля. Также нужно учитывать ёмкость аккумулятора.

Рассчитывать мощность инвертора необходимо по двум характеристикам: номинальной и пиковой. Первая из них определяет нагрузку, под которой прибор может работать длительное время. У бытовых моделей она обычно составляет от 60 до 1000 Вт. Однако существуют модификации, у которых этот показатель превышает 1 кВт. С их помощью можно обустроить мобильную мини-электростанцию. Их целесообразно покупать, например, для подключения электроинструментов.

Пиковая мощность характеризует максимальную нагрузку, которую инвертор может выдержать в течение короткого промежутка времени. Она варьируется в пределах 150 – 10000 Вт. Ток, потребляемый некоторыми электроприборами при начале работы, в несколько раз превышает номинальное значение

Выбирая преобразователь, нужно обязательно обратить внимание на этот момент, иначе подключенное к нему оборудование может не запуститься

Мнение эксперта
Кузнецов Василий Степанович

Если устройство используется при работающем двигателе автомобиля, ток его нагрузки не должен быть выше тока, вырабатываемого генератором.

Для бытовых нужд (например, путешествий на автомобиле) обычно бывает достаточно инвертора мощностью до 600 Вт. Этого хватит, чтобы включить холодильник, зарядить телефон, ноутбук или фонарик. Ток нагрузки такого прибора составляет примерно 50 А, что значительно меньше показателей современных автомобильных генераторов.

Форма тока

Важным критерием выбора преобразователя является форма тока, получаемая на выходе. От этого параметра зависит, какие приборы к нему можно подключить.

Существует два вида формы:

  1. Чистая (непрерывная) синусоида. Диаграмма тока представляет собой ровную синусоиду. Такие приборы обеспечивают безопасное подключение любого оборудования. В схему этих устройств входят дорогостоящие комплектующие, поэтому цена на них достаточно высока.
  2. Модифицированная (изменённая) синусоида. Диаграмма тока – ступенчатая. Такие инверторы нельзя использовать для подключения электроинструмента с асинхронными двигателями, компрессоров и приборов, восприимчивых к помехам. Оборудование либо вообще не запустится, либо будет работать в экстремальном режиме, что приводит к снижению КПД и сокращению срока службы. Преобразователи с модифицированной синусоидой подходят для питания ламп, обогревателей, коллекторных двигателей, телефонов, ноутбуков, телевизоров. Повысить качество работы можно за счёт дополнительной установки устройства плавного пуска.

Стоимость инверторов с чистым синусом достаточно высока. Приобретать их целесообразно только при необходимости подключить оборудование, несовместимое с модифицированной синусоидой.

Виды и принцип работы преобразователей напряжения

Преобразователи напряжения — это электронные устройства, предназначенные для изменения уровня входного напряжения на другой уровень выходного напряжения. Они широко используются в различных электронных системах, начиная от промышленных установок, заканчивая бытовыми приборами. В зависимости от способа преобразования напряжения, существуют различные типы преобразователей.

1. Линейные преобразователи

  • Однополупериодные преобразователи: Они используются для преобразования переменного напряжения в постоянное путем однократного выпрямления полудискретным диодом.
  • Многополупериодные преобразователи: Они используются для преобразования переменного напряжения в постоянное путем многократного выпрямления полудискретным диодом.
  • Линейные регулируемые преобразователи: Они позволяют регулировать выходное напряжение в широком диапазоне, используя специальные управляющие схемы.

2. Импульсные преобразователи

  • Импульсные преобразователи с фиксированным коэффициентом заполнения: Эти преобразователи используются для преобразования переменного напряжения в постоянное с помощью модуляции ширины импульсов.
  • Импульсные преобразователи с переменным коэффициентом заполнения: Эти преобразователи позволяют регулировать выходное напряжение, изменяя коэффициент заполнения импульсов.
  • Многозвенные импульсные преобразователи: Они состоят из нескольких однократных импульсных преобразователей, которые работают параллельно или последовательно для обеспечения необходимых выходных напряжений.

3. Операционные усилители в качестве преобразователей

Операционные усилители могут использоваться в качестве преобразователей напряжения, особенно в случаях, когда требуется высокая точность и стабильность выходного напряжения. Они могут выполнять функции усиления, инверсии, а также изменять уровень постоянного напряжения.

Каждый тип преобразователя имеет свои преимущества и ограничения, и выбор конкретного преобразователя зависит от требований конкретного приложения. Независимо от типа, преобразователи напряжения играют важную роль в электронике и позволяют нам использовать электроэнергию в более удобной и эффективной форме.

Примечания

  1. ГОСТ Р 50369-92 Электроприводы. Термины и определения
  2. С. Ю. Забродин. Глава 5 Маломощные выпрямители постоянного тока, §5.1 Общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 287. — 496 с.

  3. С. Ю. Забродин. Глава 6 Ведомые сетью преобразователи средней и большой мощности, §6.1 общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 315. — 496 с.

  4. С. Ю. Забродин. Глава 8 Автономные инверторы, §8.1 Автономные инверторы и их классификация // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 438. — 496 с.

Это заготовка статьи об электричестве. Вы можете помочь проекту, дополнив её.

Усовершенствования схем инверторов

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами. Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках. Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации)

Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече. Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов. В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

На примере последней схемы это будет выглядеть так:

Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас, если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:

Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР: Возьмем реле с напряжением срабатывания (Uр) 9 вольт и сопротивлением обмотки (Rо) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (Umin) , последовательно с обмоткой нужно включить резистор с сопротивлением Rн, рассчитываемым из условия равенства Uр/Rо=(Umin—Uр)/Rн. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.

Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:

Регулировка порога срабатывания осуществляется подбором резистора R3.

Предлагаем посмотреть видео по теме

Поделитесь в социальных сетях:FacebookX
Напишите комментарий