Назначение и принцип действия трансформаторов напряжения

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Назначение и принцип действия трансформаторов напряжения

Классический трансформатор напряжения (ТН) – это устройство, преобразующее одно его значение в другое. Процесс сопровождается частичной потерей мощности, но оправдан в ситуациях, когда необходимо изменить параметры входного сигнала. В конструкции такого трансформатора предусмотрены намоточные элементы, при правильном расчете которых удается получить требуемое выходное напряжение.

  1. Назначение и принцип действия
  2. Чем отличается трансформатор тока от трансформатора напряжения
  3. Классификация трансформаторов напряжения
  4. Измерительные трансформаторы напряжения и тока
  5. Особенности работы ТН в сетях с изолированной и заземленной нулевой точкой

Маркировка силовых трансформаторов


Пример и расшифровка маркировки силового трансформатора АТДЦТН-125000/220/110/10-У1

Пример маркировки трансформатора с обозначением позиций, параметров и климатического исполнения приводится на рисунке.

  1. Назначение трансформатора (в обозначении может отсутствовать)
    • А – автотрансформатор
    • Э – электропечной
  2. Количество фаз
    • О — однофазный трансформатор
    • Т — трехфазный трансформатор
  3. Расщепление обмоток (в обозначении может отсутствовать)
  4. Cистема охлаждения
    1. Сухие трансформаторы
      • С — естественное воздушное при открытом исполнении
      • СЗ — естественное воздушное при защищенном исполнении
      • СГ — естественное воздушное при герметичном исполнении
      • СД — воздушное с дутьем
    2. Масляные трансформаторы
      • М — естественное масляное
      • МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
      • Д — масляное с дутьем и естественной циркуляцией масла
      • ДЦ — масляное с дутьем и принудительной циркуляцией масла
      • Ц — масляно-водяное с принудительной циркуляцией масла
    3. С негорючим жидким диэлектриком
      • Н — естественное охлаждение негорючим жидким диэлектриком
      • НД — охлаждение негорючим жидким диэлектриком с дутьем
  5. Конструктивная особенность трансформатора (в обозначении может отсутствовать)
    • Л — исполнение трансформатора с литой изоляцией
    • Т — трехобмоточный трансформатор
    • Н — трансформатор с РПН
    • З – трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой
    • Ф – трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака
    • Г – трансформатор в гофробаке без расширителя – “герметичное исполнение”
    • У – трансформатор с симметрирующим устройством
    • П – подвесного исполнения на опоре ВЛ
    • э – трансформатор с пониженными потерями холостого хода (энергосберегающий)
  6. Назначение (в обозначении может отсутствовать)
    • С — исполнение трансформатора для собственных нужд электростанций
    • П — для линий передачи постоянного тока
    • М — исполнение трансформатора для металлургического производства
    • ПН – исполнение для питания погружных электронасосов
    • Б – для прогрева бетона или грунта в холодное время года (бетоногрейный), такой же литерой может обозначаться трансформатор для буровых станков
    • Э – для питания электрооборудования экскаваторов (экскаваторный)
    • ТО – для термической обработки бетона и грунта, питания ручного инструмента, временного освещения
    • Ш – шахтные трансформаторы (предназначены для электроснабжения угольных шахт стационарной установки)
    • Г – трансформатор с грозозащитой
    • К – трансформатор с кабельными вводами

См. также

  • Схема замещения трансформатора
  • Справочные данные параметров трансформаторов до 35 кВ
  • Справочные данные параметров трансформаторов от 35 кВ

Как подключить в сеть трансформатор напряжения

Если в цепи переменного тока напряжение выше 220 В, необходимо использовать трансформаторы напряжения. Способ подключения устройства будет зависеть от конструкции трансформатора. Так, на линейное напряжение подключается однофазный незаземляемый трансформатор в трехфазной сети, как показано на рис. 3, а на фазное – заземляемый.


Рис. 3. Схема включения трансформатора напряжения в сеть, где U1 – междуфазное (линейное) напряжение первичной обмотки 1; U2 – напряжение вторичной обмотки 2; 3 – магнитопровод трансформатора; F – предохранители трансформатора; A, X и а, х – выводы первичной и вторичной обмотки соответственно (вывод «х» необходимо заземлить); w1 и w2 – количество витков в первичной и вторичной обмотках соответственно; V – вольтметр; W – ваттметр; KV – реле напряжения (устройство защиты)

Силовые трансформаторы

Силовые трансформаторы – это устройства стационарные, которые имеют как минимум две обмотки, использующиеся для преобразования напряжения и тока до необходимого в работе уровня. Как правило, частота преобразованной электроэнергии остается прежней. Силовые трансформаторы состоят из клемм, охладителей и приборов для регулирования уровня выходного напряжения. Кроме того, на такой трансформатор можно установить газовое реле, устройства для сброса давления, защиты от перенапряжений и резкого повышения давления. Также возможна установка на силовые трансформаторы поглотителей влаги и дополнительных трансформаторов тока, расходомеров, индикаторов температуры, давления, уровня масла и горючих газов. Помимо данных устройств, на силовые трансформаторы можно установить полозья или колеса, которые сделают их транспортабельными.

Обычно силовые трансформаторы применяют в случае необходимости увеличить ток и снизить напряжение электроэнергии, идущей от основной электростанции, поэтому силовые трансформаторы используются в различных отраслях промышленности. То есть везде, где применяют устройства, работающие на электроэнергии, а также везде, где жизненно необходимо регулировать параметры электричества, преобразуя ее в электричество нужного тока и напряжения и препятствуя резким скачкам этих параметров.

Силовые масляные трансформаторы

Во многих отраслях народного хозяйства активно используются силовые масляные трансформаторы.
Такой большой спрос на них обуславливается тем, что установить их легко можно как снаружи, так и внутри помещения.
Обмотки силовых масляных трансформаторов отлично защищены от воздействия окружающей среды, за счет чего заметно увеличивается и их срок службы.
Это делает их также надежными и неприхотливыми в процессе эксплуатации.

Есть у силовых масляных трансформаторов и недостаток – он заключается в том, что окружающая среда должна иметь минимум пыли в воздухе.
Кроме того, она должна быть пассивной химически и совершенно невзрывоопасной.
Этот недостаток можно назвать единственным, но при этом он довольно существенный.

Силовые масляные трансформаторы, в которых устанавливается еще маслоуказатель МС, способны выдерживать очень большие нагрузки напряжения.
Использовать трансформаторы можно как в жарком, так и в холодном климате.
Необходимы они с целью понижения напряжения в сети электрической.

Трехфазные и высоковольтные трансформаторы

Могут быть трансформаторы трехфазными и высоковольтными.Высоковольтные трансформаторы отличаются способностью выдерживать достаточно высокую нагрузку.
За счет этого использовать их можно даже на крупных предприятиях.
Их основная работа заключается в том, чтобы от высоковольтной линии преобразовывать ток в более низкие частоты.

Трехфазные трансформаторы способны преобразовывать ток при разных температурах воздуха.
Но в условиях тряски, вибрации или ударов такие трансформаторы использовать запрещено.

Монтаж измерительных трансформаторов

В ОРУ 110 (220) кВ тяговых подстанций применяют измерительные трансформаторы напряжения типа НКФ-110 (220) и трансформаторы тока типа ТФЗМ-110 (220), которые поставляются под монтаж в собранном виде.

Трансформатор напряжения НКФ-110 (трансформатор напряжения каскадный, фарфоровый) состоит из цилиндрической фарфоровой втулки с трансформаторным маслом, смонтированной на тележке и закрытой металлическим колпаком – расширителем с указателем уровня масла. Первичная обмотка, состоящая из двух одинаковых последовательно соединенных секций, находится внутри фарфоровой втулки и подсоединяется началом к зажиму, расположенному на расширителе, а концом – к тележке (земле). Средние точки секций соединены со своими сердечниками. Вторичную обмотку размещают на сердечнике секции, соединенной с землей. На тележке смонтированы выводы вторичной обмотки, заземляющий болт и рым-болты для подъема трансформатора.

Трансформаторы напряжения НКФ-220 состоят из двух блоков.

Для РУ 6, 10 и 35 кВ трансформаторы тока (типов ТЛМ-6, ТПЛ-10, ТФН-35, ТФЗМ-35 и др.) и напряжения (типов НТМИ-10, ЗНОМ-35 и др.) приходят в собранном виде и смонтированными в комплектные ячейки и блоки распределительных устройств заводом-изготовителем. На подстанции комплектные ячейки монтируют на лежневом основании.

Трансформатор тока типа ТФН-35 состоит из первичной и вторичной кольцеобразных обмоток, помещенных в цилиндрический фарфоровый корпус с трансформаторным маслом. Взаимное расположение обмоток имеет вид восьмерки. Такие трансформаторы выпускают с одним или двумя сердечниками. В металлическом колпаке трансформатора расположены зажимы для переключения секций первичной обмотки, маслоуказательное стекло и предохранительный клапан. Выводы вторичной обмотки расположены в коробке основания корпуса трансформатора, на котором смонтированы заземляющий болт и рым-болты для подъема трансформатора.

Измерительные трансформаторы перед монтажом следует тщательно осмотреть, обращая особое внимание на наличие трещин и сколов фарфоровых изоляторов; отсутствие следов течи из уплотнений бака, фланцев изоляторов, механических повреждений бака; уровень масла по маслоуказателю и его исправность; сообщаемость маслоуказателя и расширителя с корпусом трансформатора. При передвижении во время монтажа маслонаполненных измерительных трансформаторов угол наклона их к вертикальной оси не должен превышать 15°. При передвижении во время монтажа маслонаполненных измерительных трансформаторов угол наклона их к вертикальной оси не должен превышать 15°

При передвижении во время монтажа маслонаполненных измерительных трансформаторов угол наклона их к вертикальной оси не должен превышать 15°.

Измерительные трансформаторы устанавливают на фундаментные и свайные основания, а также монтируют на единых рамах с разъединителями на лежневые основания.

Трансформаторы наружной установки, монтируемые на железобетонных и металлических конструкциях, должны быть установлены по уровню и отвесу с допуском ±5 мм и надежно закреплены.

Работы по монтажу трансформаторов тока и напряжения производятся в следующей последовательности:

доставляют в транспортной упаковке в рабочую зону и разгружают автокраном грузоподъемностью 5…7 т;

распаковывают и очищают от пыли и грязи, протирая фарфоровую рубашку бензином;

проверяют исправность уплотнений, отсутствие течи масла;

замеряют уровень масла и при необходимости доливают сухим маслом с электрической прочностью не менее 45 кВ;

переключают у трансформаторов тока первичную обмотку согласно заданному проектом коэффициенту трансформации;

устанавливают автокраном грузоподъемностью 5…7 т трансформаторы, выверяя с помощью уровня и отвеса опорные конструкции, при этом маслоуказатели блоков НКФ-220 должны быть обращены в одну сторону;

для трансформаторов напряжения НКФ-220 монтируют медные перемычки между выводами ВН блоков;

заземляют корпус измерительного трансформатора через специальный болт заземления на нижнем цоколе;

устанавливают шкафы зажимов для схемной сборки вторичных цепей.

После монтажа испытывают и проверяют электрические характеристики трансформатора, проводят анализ и испытание масла.

Цепи вторичных обмоток трансформаторов тока должны быть замкнуты через приборы, а при отсутствии их закорочены на зажимах трансформаторов. Неиспользуемые вторичные обмотки следует закоротить на трансформаторах тока. Сечение закороток должно быть не менее 2,5 мм 2 .

Виды специализированных трансформаторов

Это трансформаторные устройства, предназначенные для решения узконаправленных задач электросистемы.

  • Автотрансформатор. Устройство, обмотки которого связаны между собой как по электрическому, так и по магнитному принципу. Единственная обмотка имеет несколько выводящих линий для получения токов с разными показателями напряжения. По сути это компактный трансформатор понижающего вида, который обладает меньшей стоимостью за счет экономии на обмотке. Агрегаты внедряют в устройства автоматического управления, в высоковольтные электросети, соединяя обмотки по схеме звезды или треугольника. Одна из разновидностей модели – лабораторный автотрансформатор, позволяющий плавно регулировать напряжение, поставляемое потребителю. Применяется в пусконаладочных системах для точной настройки электрооборудования.
  • Сварочный. Предназначен для подключения к сварочным аппаратам и преобразования токов высокого напряжения в низкие. Такие трансформаторы востребованы в строительной промышленности для монтажа металлических конструкций – арматуры, труб, узлов. Первичная обмотка сварочного трансформатора принимает входящие токи, намагничивая магнитопровод, а вторичная обмотка индуцирует переменный ток до необходимых значений.
  • Импульсный. Предназначен для трансформации тока и напряжения импульсных сигналов с минимальными искажениями показателей на выходе. Этот вид трансформаторов особенно востребован в радиоэлектронике, триодных генераторах, дифференцирующих модулях. В электросетях импульсные устройства играют роль защитных элементов при коротких замыканиях вследствие избыточного нагрева или чрезмерной нагрузки. По конструкции различают бронестержневые, броневые, тороидальные, стержневые импульсные трансформаторы.
  • Разделительный. Состоит из двух обмоток одинаковой конструкции, не связанных между собой и создающих одинаковое напряжение на входе и на выходе. Используется в целях повышения надежности электросетей, обеспечения электрической безопасности и гальванической развязки электроцепи.
  • Согласующий. Согласовывает показатели сопротивления токов в разных звеньях электросхем с минимальными изменениями первоначальных показателей. Трансформаторы такого типа применяются также для блокирования гальванического взаимодействия в разных участках электросистемы.
  • Высокочастотный. Способен передавать высокоточные сигналы за счет особого материала обмотки – с использованием ферритов, модифицированного кремнием или никелем железа. Подобные сплавы обладают низкой диэлектрической проницаемостью, линейностью характеристик передачи электроэнергии и способностью к локализации возникающих помех. Высокочастотные трансформаторы входят в конструкции распределительных устройств, установок возобновляемой энергетики, промышленных приводов и пр.
  • Пик-трансформатор. Преобразует энергетические потоки синусоидальной формы, подаваемые на первичную обмотку, в разнополярные импульсы заданной частоты на выходе вторичной обмотки. Кратковременные импульсы напряжения с пиками и спадами лежат в основе работы полупроводниковых и газоразрядных приборов.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

К основным техническим параметрам трансформаторов напряжения относятся:

  • номинальное значение напряжения электрической сети, для работы в которой предназначен ТН;
  • коэффициент трансформации;
  • мощность — номинальная величина и её максимально допустимое значение.

Поскольку величина U на низкой стороне трансформатора напряжения любого класса имеет одинаковое значение, числовое значение коэффициента трансформации равно напряжению первичной сети, делённому на 100 или на 100/√3.

Вторичные измерительные приборы обычно имеют шкалу на 100 вольт, которая проградуирована в первичных единицах. Например, при измерении в сети 35 кВ номинальное значение U вольтметра составляет 100 вольт, при этом показания прибора составляют 35 кВ.

В схемах учёта при определении реального значения потреблённой электрической энергии показания счётчика умножаются на коэффициенты трансформации трансформаторов тока и напряжения.

При определении фактической мощности нагрузки измерительных трансформаторов обычно пользуются величиной суммарного сопротивления приборов, подключенных к низкой стороне.

Оптимальное значение мощности нагрузки, при которой обеспечивается соответствие основных параметров ТН, лежит в пределах 25% – 100% номинала.

  *  *  *

2014-2024 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Классификации

Трансформаторы классифицируются по ряду параметров, таких как:

  • Деловое свидание, встреча. Они используются: для изменения напряжения, измерения тока, защиты электрических цепей, в качестве лабораторных и промежуточных устройств.
  • Способ установки. В зависимости от положения и мобильности трансформатор может быть: стационарный, переносной, внутренний, внешний, опорный, сборный.
  • Количество ступеней. Устройства делятся на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низкое и высокое напряжение.
  • Изоляция обмоток. Чаще всего используется масло-бумага, сухая, составная.

Кроме того, преобразовательные устройства бывают разных типов, каждое из которых имеет свою систему классификации.

Силовой

Чаще всего используется силовой трансформатор. Устройства с прямым преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы в различных отраслях электроэнергетики. Применяются на линиях электропередачи напряжением 35–1150 кВ, в городских электрических сетях напряжением 6 и 10 кВ, для питания конечных потребителей напряжением 220 / 380В. С помощью устройств подаются питание на всевозможные электроустановки и устройства в диапазоне от долей до сотен тысяч вольт.


Силовой трансформатор

Измерительные

Трансформаторы тока (ТТ) снижают ток до требуемых значений. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. При этом вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных устройств и индикаторов. С помощью ТА осуществляется гальваническая развязка, что позволяет отбрасывать шунты при измерениях.


ТТ высокого напряжения (слева) и ТТ низкого напряжения (справа)

С помощью трансформаторов напряжения (ТН) так же, как ТТ только напряжения. Помимо преобразования входных параметров, электрооборудование и его отдельные элементы защищены от высокого напряжения.


Телевизор высокого напряжения (слева) и телевизор низкого напряжения (справа)

Импульсный

Если необходимо преобразовать сигналы импульсного характера, то используются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не меняют форму.

Автотрансформатор

В автотрансформаторах обмотки образуют цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от преобразователей других типов, устройства могут содержать только 3 выхода, что позволяет работать с разными напряжениями. Устройства отличаются высоким КПД, что особенно актуально при небольшой разнице входного и выходного напряжения.


Однофазный (слева) и трехфазный (справа)

Без гальванической развязки представители этого типа увеличивают риск поражения нагрузкой высоким напряжением. Надежное заземление и низкий коэффициент трансформации — обязательные условия для работы устройств. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и массой, стоимостью.

Разделительный

Для развязывающих трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования с поврежденной изоляцией.


Изолирующий трансформатор

Согласующий

Согласующие трансформаторы используются для выравнивания сопротивлений между ступенями электронных схем. Сохраняя форму волны, они действуют как гальваническая развязка.

Пик-трансформатор

С помощью пикового трансформатора синусоидальное напряжение преобразуется в импульсное. В этом случае импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью двойного пускателя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, чем стандартные дроссели. Устройства используются в качестве входных фильтров в источниках питания, аудио и цифровой технике.


Двойной стартер

Сварочный

Помимо вышеперечисленного, существует понятие сварочных трансформаторов. Специализированные устройства для сварочных работ снижают напряжение домашней сети за счет увеличения силы тока, измеряемой тысячами ампер. Последнее регулируется путем разделения обмоток на сектора, что отражается на индуктивном сопротивлении.


Сварочный трансформатор

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:

    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:

    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:

    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:

    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками.

Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии.

Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники.

Прибор ставится одним мастером при помощи крепежных зажимов.

Стационарные требуют оборудования фундамента, монтажа несущих стоек.

Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

РАСЧЕТ ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Как показывает опыт и практика, точный расчет трансформатора напряжения себя не оправдывает. Точность нужна только при определении количества витков для получения нужного коэффициента трансформации. Диаметр проводов обмоток должен соответствовать или превосходить минимально допустимому по условиям нагрева.

Общая последовательность расчета трансформатора такова:

  • определение мощности трансформатора;
  • подбор сердечника с сечением максимально близкого к расчетному, но не меньше его;
  • определение количества витков катушек, приходящихся на один вольт напряжения;
  • расчет количества витков для каждой обмотки;
  • расчет сечения проводов обмоток.

Мощность трансформатора определяется суммированием мощностей всех обмоток за исключением первичной. Для каждой из них — это произведение напряжения на максимальный ток потребления. Для расчета сечения сердечника нужна габаритная мощность трансформатора, которая учитывает КПД.

Рассматриваемые трансформаторы имеют КПД от 70% при мощности до 150 Вт и до 90 % при большей мощности. Таким образом, чтобы получит габаритную мощность нужно мощность вторичных обмоток умножить на коэффициент 1.3 — 1.1.

Площадь поперечного сечения можно найти как квадратный корень из габаритной мощности. Имея значение площади можно подобрать из таблиц готовый сердечник. Если планируется разборный, то исходя из размеров имеющихся пластин можно вычислить необходимую толщину набора. Как уже говорилось выше, сечение должно быть близким к квадрату.

Наибольшие затруднения вызывает нахождение числа витков. Для этого нужно сначала рассчитать сколько витков должно приходиться на один вольт напряжения. Это значение будет различаться в зависимости от площади сечения сердечника. Следует иметь ввиду, что при одинаковом сечении у магнитопроводов разных типов это значение также будет различно.

Можно воспользоваться следующей формулой: ,

где — количество витков на вольт, — площадь сечения сердечника в см2, — коэффициент, зависящий от материала и типа сердечника.

Значение коэффициента К:

  • для наборных сердечников — 60;
  • для типов ПЛ — 50;
  • для тороидальных сердечников 40.

Как видим, количество витков у тороидального трансформатора будет минимальным.
Умножая число витков на вольт на требуемое напряжение каждой обмотки, получим значение количества витков. Для компенсации потерь напряжения, количество витков вторичных обмоток нужно увеличить на 5%.

У мощных трансформаторов (более 150 Вт) этого делать не нужно.

Сечение проводов также определяется по упрощенной формуле: , где — ток обмотки.

Провод нужно брать ближайшего к расчетному сечения (можно больше, но не меньше).

В случае сомнений по поводу того, поместится ли провод в обмотке, можно посчитать, сколько витков уложится в один слой и определить количество слоев и их общую толщину для каждой из обмоток. Это справедливо только для Ш-образных и П-образных трансформаторов.

В тороидальных количество витков в каждом последующем случае будет меньше, чем в предыдущем за счет уменьшения внутреннего диаметра.

2012-2024 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Трансформаторы напряжения — назначение и принцип действия

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий