Правило золотого сечения в архитектуре, строительстве и дизайне

Особенность золотого сечения для человека

Старинная архитектура зданий и домов средневековья остается притягательной и интересной для современного человека по многим причинам:

  • Индивидуальный художественный стиль в оформлении фасадов позволяет избежать современного штампа и серости, каждое здание представляет собой произведение искусства;
  • Массовое использование для декорирования и украшения статуй, скульптур, лепнины, необычных сочетаний строительных решений разных эпох;
  • Пропорции и композиции здания притягивают взор к наиболее важным элементам постройки.

Важно! При проектировании дома и разработке внешнего вида средневековые архитекторы применяли правило золотого сечения, неосознанно используя особенности восприятия подсознания человека. Современные психологи экспериментально доказали, что золотое сечение является проявлением неосознанного желания или реакции человека на гармоничное сочетание или пропорцию в размерах, формах и даже цветах. Был проведен эксперимент, в ходе которого группе людей, незнакомых между собой, не имеющих общих интересов, разных профессий и возрастных категорий, предложили ряд тестов, среди которых была задача согнуть лист бумаги в наиболее оптимальной пропорции сторон

По результатам тестирования было установлено, что в 85 случаях из 100 лист сгибался испытуемыми практически точно по золотому сечению

Был проведен эксперимент, в ходе которого группе людей, незнакомых между собой, не имеющих общих интересов, разных профессий и возрастных категорий, предложили ряд тестов, среди которых была задача согнуть лист бумаги в наиболее оптимальной пропорции сторон. По результатам тестирования было установлено, что в 85 случаях из 100 лист сгибался испытуемыми практически точно по золотому сечению

Современные психологи экспериментально доказали, что золотое сечение является проявлением неосознанного желания или реакции человека на гармоничное сочетание или пропорцию в размерах, формах и даже цветах. Был проведен эксперимент, в ходе которого группе людей, незнакомых между собой, не имеющих общих интересов, разных профессий и возрастных категорий, предложили ряд тестов, среди которых была задача согнуть лист бумаги в наиболее оптимальной пропорции сторон. По результатам тестирования было установлено, что в 85 случаях из 100 лист сгибался испытуемыми практически точно по золотому сечению.

Поэтому современная наука считает, что феномен универсальной пропорции является психологическим явлением, а не действием каких-либо метафизических сил.

Золотое сечение – что это?

Одним из самых мощных композиционных правил в фотографии является правило золотого сечения, которое еще называют “божественной пропорцией”. Согласно ему, кадр необходимо разделить на девять частей – двумя линиями по горизонтали и двумя по вертикали. На пересечении линий образовываются четыре точки, называемые узлами внимания – это самые активные области на фотографии, на которые приходится больше всего внимания. Именно там и на самих линиях необходимо размещать главные объекты и расставлять акценты.

Композиция должна состоять из нескольких частей – таких, чтобы вся горизонталь отрезка имела в соотношении большую и меньшую части, одинаково пропорциональные к основной длине. Параметры золотого сечения составляют 1:0.618:1.

История возникновения правила

Свои истоки правило берет с древнейших времен: первые упоминания о нем найдены в трудах Евклида “Начала”, которые были написаны около 300 лет до н. э. Там он применял принцип деления отрезка в крайнем и среднем отношении для построения правильного пятиугольника, который тоже называют золотым.

По другой версии, за закон золотого сечения человечество должно быть благодарно Пифагору, который сам сделал это открытие и поведал о нем остальным. Но Пифагор был не только известным математиком, но и мистиком, поэтому открытие данного правило обросло мистическими значениями и потусторонними смыслами

Последователи великого мыслителя не брали во внимание такие домыслы, а лишь руководствовались этим правилом для создания прекрасных скульптур, сооружений и барельефов

Интересный факт: эти золотые пропорции использовались в жизни древних людей, а точнее – египтян. По правилам золотого сечения сконструированы пирамида Хеопса, египетский храм Парфенон, барельефы и даже украшения, которые найдены в гробнице Тутанхамона.

Поучаствовал в поиске идеальных пропорций и итальянский математик Леонардо Фибоначчи, которому удалось выявить удивительную закономерность. Случилось это примерно в 1200 году. Ученый тогда заметил, что в природе и окружающей нас действительности есть определенная схема, которой все подчиняется и которая очень приятна человеческому глазу. Он поставил в ряд определенные числа и заметил, что каждая часть последовательности является результатом сложения двух предыдущих. Благодаря этой последовательности мир увидел знаменитые спираль и сетку Фибоначчи, которые используют в построении грамотной композиции до сих пор.

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.


Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.


Построение пентаграммы

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Использование фактора универсального сечения в современном дизайне и архитектуре

Принципы применения золотой пропорции в последние несколько лет стали необыкновенно популярны в строительстве частных домов. На смену экологии и безопасности строительных материалов пришли гармоничность конструкции и правильное распределение энергии внутри дома.

Современная интерпретация правила всеобщей гармонии давно распространилась за пределы привычной геометрии и формы объекта. Сегодня правилу подчиняются не только размерные цепи длины портика и фронтона, отдельных элементов фасада и высоты здания, но и площадь комнат, оконных и дверных проемов, и даже цветовая гамма внутреннего интерьера помещения.

Проще всего построить гармоничный дом на модульной основе. В этом случае большинство отделений и комнат изготавливаются в виде самостоятельных блоков или модулей, спроектированных с соблюдением правила золотого сечения. Построить здание в виде набора гармоничных модулей значительно проще, чем строить одну коробку, в которой большая часть фасада и внутренних помещений должна быть в жестких рамках пропорций золотого сечения.

Немало строительных фирм, выполняющих проектирование частных домовладений, используют принципы и понятия золотого сечения для увеличения сметы и создания у клиентов впечатления глубокой проработки конструкции дома. Как правило, такой дом декларируется, как очень удобный и гармоничный в пользовании. Правильно подобранное соотношение площадей комнат гарантирует душевный комфорт и отменное здоровье хозяев.

Если дом был построен без учета оптимальных соотношений золотого сечения, можно выполнить перепланировку комнат так, чтобы пропорции помещения соответствовали соотношению стен в пропорции 1:1,61. Для этого может перемещаться мебель или устанавливаться дополнительные перегородки внутри комнат. Аналогичным образом меняются размеры оконных и дверных проемов так, чтобы ширина проема была меньше высоты дверного полотна в 1,61 раза. Таким же способом выполняется планирование мебели, бытовой техники, отделки стен и пола.

Сложнее выбрать цветовое оформление. В этом случае вместо привычного соотношения 63:37 последователями золотого правила принята упрощенная трактовка – 2/3. То есть основной цветовой фон должен занимать 60% пространства помещения, оттеняющему цвету отдают не более 30%, и остальное отводится под различные родственные тона, призванные усилить восприятие цветового решения.

Внутренние стены помещения делятся горизонтальным поясом или бордюром на высоте 70 см, установленная мебель должна соизмеряться с высотой потолков по соотношению золотого сечения. То же правило касается распределения длин, например, размер дивана не должен превышать 2/3 длины простенка, а общая площадь, занимаемая мебелью, относится к площади комнаты, как 1:1,61.

Золотую пропорцию сложно в массовом порядке применять на практике из-за всего лишь одного значения сечения, поэтому при проектировании гармоничных зданий нередко прибегают к ряду чисел Фибоначчи. Это позволяет расширить количество возможных вариантов пропорций и геометрических форм основных элементов дома. В этом случае ряд чисел Фибоначчи, связанных между собой четкой математической зависимостью, называют гармоническим или золотым.

В современной методике проектирования жилья на основе принципа золотого сечения, кроме ряда Фибоначчи, широко используется принцип, предложенный известным французским архитектором Ле Корбюзье. В этом случае в качестве отправной единицы измерения, по которой рассчитываются все параметры здания и внутреннего интерьера, выбирается рост будущего владельца или средняя высота человека. Такой подход позволяет спроектировать дом не только гармоничный, но и по-настоящему индивидуальный.

Как построить прямоугольник с идеальными пропорциями

Чтобы применять на практике полученную информацию, надо каким-то образом научиться делить пространство или строить его согласно этому закону. Для начала давайте научимся строить прямоугольник с идеальными пропорциями. За основу берем квадрат.

Построение прямоугольника с золотым сечением

Квадрат делим пополам, в одном из полученных прямоугольников проводим линию, которая соединяет противоположные углы. Дальше берем циркуль, ставим иголку в центр нижней стороны квадрата, откладываем длину полученной диагонали и отмечаем ее на линии, которая будет продолжением нижней стороны квадрата. Полученный прямоугольник имеет соотношение сторон 1,62 (это как раз то соотношение, которое и дает 62% и 38%).

Это явно неспроста. Хотя далеко не все подчиняется этой закономерности

Что еще интересно, что если вы начнете делить прямоугольник с соотношением сторон 1,62 на квадрат и прямоугольник, вы получите снова прямоугольник с идеальными пропорциями, но меньшего размера. Если вы его снова разделите по тому же принципу, будет еще одна пара квадрат+прямоугольник со сторонами, соотношение которых будет соответствовать золотому сечению. И так до тех пор, пока вы сможете проводить деление. Но что еще интереснее, в это деление отлично вписывается ряд Фибоначчи, который имеет вид раскручивающейся спирали. Иллюстрация на рисунке выше.

Использование золотого сечения в дизайне

Принципы использования универсальной пропорции все чаще используют при строительстве частных домов

Особое внимание уделяется соблюдению оптимальных пропорций конструкции. Немало внимания уделяют правильному распределению внимания внутри дома. Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы

Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера

Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы. Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера.

Соорудить гармоничное строение на модульном основании гораздо проще. Многие отделения и помещения в этом случае выполняются как отдельные блоки. Они проектируются в строгом соответствии с гармоническим правилом. Возвести здание как набор отдельных модулей, значительной проще, чем создавать единую коробку.

Многие фирмы, занимающиеся сооружением загородных домов, при создании проекта соблюдают гармоническое правило. Это позволяет создать у клиентов впечатление, что конструкция здания детально проработана. Такие дома обычно описывают, как наиболее гармоничные и комфортные в использовании. При оптимальном выборе площадей комнат жильцы психологически ощущают успокоение.

Если дом возведен без учета гармонических пропорций, можно создать планировку, которая будет по соотношению размеров стен приближена к показателю 1:1,61. Для этого в комнатах устанавливают дополнительные перегородки, или переставляют предметы мебели.

Аналогично меняют габариты дверей и окон таким образом, чтобы проем имел ширину, показатель которой меньше значения высоты в 1,61 раза.

Сложнее подбирать цветовые решения. В этом случае можно соблюдать упрощенное значение золотого сечения – 2/3. Основным цветовым фоном следует занять 60% пространства комнаты. Оттеняющий оттенок занимает 30% помещения. Оставшаяся площадь поверхностей закрашивается близкими друг к другу тонами, усиливающими восприятие выбранного цвета.

Внутренние стены комнат делят горизонтальной полосой. Ее располагают в 70 см от пола. Высота мебели должна находиться в гармоническом соотношении с высотой стен. Это правило относится и к распределению длин. К примеру, диван должен иметь габариты, которые бы оказались не меньше 2/3 длины простенка. Площадь помещения, которая занята предметами мебели, тоже должна иметь определенное значение. Она относится к общей площади всего помещения как 1:1,61.

Золотая пропорция сложно применима на практике ввиду наличия всего одного числа. Именно поэтому. Проектирую гармоничные строения, пользуются рядом чисел Фибоначчи. Благодаря этому обеспечивается разнообразие вариантов форм и пропорций деталей строения. Ряд чисел Фибоначчи также носит название золотого. Все значения строго соответствуют определенной математической зависимости.

Кроме ряда Фибоначчи, в современной архитектуре применяют и другой метод проектирования – принцип, заложенный французским архитектором Ле Корбюзье. При выборе этого способа отправной единицей измерения выступает рост владельца дома. Исходя из этого показателя рассчитывают размеры здания и внутренних помещений. Благодаря этому подходу дом получается не только гармоничным, но и приобретает индивидуальность.

Любой интерьер приобретет более завершенный вид, если в нем использовать карнизы. При использовании универсальных пропорций можно вычислить его размер. Оптимальными показателями являются 22,5, 14 и 8,5 см. Устанавливать карниз следует по правилам золотого сечения. Маленькая сторона декоративного элемента должна относиться к большей так, как относится к сложенным значениям двух сторон. Если большая сторона будет равна 14 см, то маленькую стоит сделать 8,5 см.

Придать помещению уюта можно путем деления стеновых поверхностей при помощи гипсовых зеркал. Если стена поделена бордюром, от оставшейся большей части стены следует отнять высоту карнизной планки. Для создания зеркала оптимальной длины от бордюра и карниза следует отступить одинаковое расстояние.

Математические и эстетические свойства

(Рис.2) Построение золотого прямоугольника

Обычно названия золотого сечения (отношения), часто встречается как золотое сечение (латинский: sectio aurea) и золотая середина .,, Другие описания, с которыми часто сталкиваются, применяют выражения как необычное или как среднее сечение , как божественная пропорция, что на (латинском: sectio divina); также как золотая пропорция, золотое сокращение, золотое число, а также как среднее из Phidias.,,Золотое сечение часто обозначается греческой буквой — .

Фигура (см. Рис.2) иллюстрирует геометрические отношения, которые определяют эту константу:

По крайней мере со времён Ренессанса, много художников и архитекторов строили свои работы так, чтобы приблизить золотое сечение (отношение) к правилам золотого прямоугольника, в котором отношение более длинной стороны к корткой было золотым отношением, равной золотой пропорции, удовлетворящее эстетические восприятия.

Алгебраически нахождение золотого сечения (см. Рис.2) отрезка длины сводится к решению уравнения:

, где = 1.6180339887 (для сравнения (см. Рис.1) ),

откуда:

Отношение может быть также выражено приближенно дробями

где — числа Фибоначчи.

Иррациональное алгебраическое число

Отношение частей в этой пропорции выражается квадратичной иррациональностью

(Греческая буква «фи», первая буква имени Фидиас (Phidias), введённая для обозначения золотого сечения) — иррациональное алгебраическое число, положительное решение квадратного уравнения

представляется в виде бесконечной цепочки квадратных корней:

представляется в виде бесконечной цепной дроби

подходящими дробями которой служат отношения последовательных чисел Фибоначчи . Таким образом, .

Золотое сечение в пятиконечной звезде

Построение золотого сечения

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 до н. э.), где оно применяется для построения правильного пятиугольника.

  • В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны ).
  • Геометрическое построение. Золотое сечение отрезка можно построить следующим образом: в точке восстанавливают перпендикуляр к , откладывают на нём отрезок , равный половине , на отрезке откладывают отрезок , равный , и наконец, на отрезке откладывают отрезок , равный . Тогда

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» – это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Пропорции золотого сечения в человеке

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

  • от плеч до макушки к размеру головы = 1:1.618

  • от пупка до макушки к отрезку от плеч до макушки = 1:1.618

  • от пупка до коленок и от коленок до ступней = 1:1.618

  • от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618

Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

  • в завитках человеческого уха мы можем увидеть золотую спираль;

  • ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

  • и в молекуле ДНК;

  • по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, – спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

  • Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

  • Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

  • Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

  • Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет

Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

  • Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

  • В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

  • В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

  • Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

  • Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

Визуальная гармония

Интересно восприятие форм и пропорций архитектуры, примеры которых представлены ниже. Монументальные сооружения не давят своей массой, они воспринимаются легко, благодаря идеальным соотношениям сторон постройки.

Пирамида Гиза – одно из величайших творений человека, обладающее своими тайнами и загадками. Пирамида построена с применением знаний теории золотого сечения. Сейчас все больше ведется споров, а действительно ли пирамиды Египта возведены по принципам божественных пропорций.

Собор Рождества Девы Марии — беломраморный кафедральный собор в Милане, воспроизводящий готический стиль архитектуры. Как раз тот его момент, когда этот стиль постепенно стала приобретать черты, свойственные более позднему периоду неоготики.

Храм Спаса на Крови – здание, своей гармонией и утонченностью располагает к спокойному созерцанию. Сооружение относится к неорусскому стилю. Золотая пропорция соблюдена здесь идеально.

Такие, казалось бы, разные по архитектуре сооружения, обладающие только им присущей геометрией и линиями, все же имеют одну общую черту. Божественные пропорцию дали возможность внести эти произведения искусств в разряд мировых шедевров зодчества.

Божественная пропорция: что создано природой

Обратимся к природе, которая является безусловной и стремится к идеальному. В любом, созданном процессе, можно наблюдать эту магическую пропорцию 62:38. Придя к выводу, что гармоничное восприятие заложено в человеке от природы, ученые назвали это соотношение «Божественная пропорция».

Архимед выразил ее в спирали, повторяющей очертания раковины моллюска, подметив однажды ее идеальные формы. Божественная пропорция в архитектуре выражена с помощью сопоставления различных элементов здания и приведения их к одному целому, гармоничному для восприятия.

Действительно, обычно притягивает взгляд либо совершенство, либо уродство. И то и другое имеет одни корни

Совершенство – созданный по системе золотой пропорции идеал, и неважно, искусственный или природный источник использовался в его создании. Уродство же, напротив, привлекает полным несоответствием гармонии, что вынуждает подсознательно искать в нем заложенные природой прекрасные пропорции

И, если постараться, их можно найти

Этот феномен будоражит мозг, заставляя искать спокойной геометрии во всем

И, если постараться, их можно найти. Этот феномен будоражит мозг, заставляя искать спокойной геометрии во всем.

Откуда взялись славянские языки, и кто на них говорит?

Современные славянские языки имеют общего прародителя – праславянский язык, который существовал до VI-VII вв. н.э. Есть несколько гипотез о месте его возникновения, но все они сходятся в том, что это случилось на территории нынешней Восточной Европы.

В VII в. одновременно с разделением на соответствующие ветви славянских племен и праславянский разделился на три языковые группы с присущими им лексическими, морфологическими, фонетическими и грамматическими особенностями:

  • западную (польский, чешский, словацкий),
  • восточную (русский, украинский, белорусский) и
  • южную (сербский, хорватский, словенский, болгарский, македонский).

Каждая из групп в ходе своего исторического развития испытывала различные влияния неславянских соседей – немецкого, венгерского, турецкого, итальянского, литовского и других языков. Это отразилось на их лексике и грамматике. Тем не менее, славянские языки сохранили около 2 тысяч общих для них слов – наиболее древних и общеупотребительных, а также стилистически нейтральных.

На самом деле, славянских языков найдется еще больше, если посчитать все региональные диалекты и языки народов, не имеющих своих государственных образований (таких, как лужицкие сербы, русины, кашубы и др.).

Правило золотого сечения

Золотое сечение — пропорция, которую заметили еще древние египтяне. Чтобы её получить, нужно разделить линию на две части так, чтобы длинная часть соотносилась с короткой в такой же пропорции, как вся линия соотносится с длинной. Оказывается, эта пропорция всегда равняется 1,618. Это число еще называют числом «фи».

Формула золотого сечения

На это число обратили внимание художники, скульпторы, архитекторы — его назвали божественной пропорцией и стали использовать в произведениях искусства, чтобы добиться идеальной композиции, наилучшего сочетания всех элементов произведения. 

С тех пор золотое сечение находят в пропорциях гениальных произведений: пирамидах в Гизе и афинском Парфеноне, «Сотворении Адама» и сводах Сикстинской капеллы, созданных Микеланджело, «Мона Лизе» Да Винчи. Замечают золотое сечение в искусстве и дизайне наших дней. Его находят даже в логотипах современных компаний — например, Пепси и а. Именно с этим математическим явлением многие связывают привлекательность этих предметов искусства и дизайна. 

Давайте разберемся, как применять золотое сечение как пропорцию в дизайне. Для начала примерим ее на разные фигуры. Вот, например, квадрат и прямоугольник. Одна сторона у них одинаковая, а другая у прямоугольника больше в соотношении 1 к 1.618:

троим прямоугольник с помощью золотого сечения

Если объединить эти фигуры, получится прямоугольник с золотым сечением. Его еще называют золотым прямоугольником:

«Золотой прямоугольник»

Особенность этого прямоугольника в том, что, сколько бы вы ни отрезали от него квадратов, стороны оставшегося прямоугольника всегда будут сохранять соотношение 1 к 1,168.

Заметили цифры в квадратах? Это математическая последовательность, которая раскрывает математическое совершенство золотого сечения, — последовательность Фибоначчи (поэтому божественную пропорцияю часто называют «золотое сечение Фибоначчи»). Она составляется по простейшему правилу: каждое следующее число — это сумма двух предыдущих: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…

Следующий шаг — спираль, построенная на основе золотого сечения. Чтобы создать ее, соединим углы квадратов дугой:

Спираль с пропорциями золотого сечения

Такую спираль можно встретить не только в чертежах, но и в живой природе. Цветы и стебли, раковины и даже ураганы созданы как будто с помощью божественной пропорции.

Золотое сечение: примеры в природе

Следущий шаг — впишем в квадраты круги. Они тоже соотносятся друг с другом в пропорции 1:1.618 и соответствуют правилу золотого сечения.

Золотое сечение на примере кругов

Итак, мы составили прямоугольники, спираль и круги на основе золотого сечения. Пора разобраться, как это применяют художники и чем он может быть полезен дизайнерам.

Пропорции золотого сечения в материальном мире

В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.

Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.

Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.

Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.

Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.

  • Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
  • Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
  • Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
  • Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
  • Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
  • Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
  • Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
  • Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
  • Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
  • Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.

Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий