Однофазные и трехфазные реле постоянного тока — принцип работы

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Это интересно: Перегорают галогеновые лампочки в люстре: в чем причина?

Твердотельное реле: виды, практическое применение, схемы подключения

Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Варианты использования

ТТР имеет смысл ставить там, где нет возможности контролировать работоспособность обычных электромеханических реле. Да, ТТР дороже, но основное их преимущество – «поставил и забыл». Часто их ставят для коммутации индуктивной нагрузки (электромагниты), для которой обычные реле подходят слабо – контакты подгорают быстро, нужно их чистить или менять. Либо ставить реле на заведомо больший ток работы.

Другой вариант использования ТТР – включение мощной нагрузки типа ТЭНов, когда мощные контакторы прослужат недолгое время из-за частых включений-выключений. Такое бывает в случае, когда нужно точное поддержание температуры, а для этого устанавливают небольшую ширину петли гистерезиса.

Как и в случае с контакторами и реле, ТТР легче работать, когда нагрузка чисто активная (АС1), то есть не содержит индуктивности (cosφ стремится к 1). Тогда он легко может коммутировать ток, указанный на его корпусе. В большинстве же случаев нагрузка является частично реактивной (cosφ = 0,7-0,8), поэтому ток ТТР нужно всегда выбирать с запасом.

Запас по току нужен также и для надежной работы системы защиты, но об этом расскажем чуть позже.

Силовая часть ТТР

Эта важная часть ТТР коммутирует ток нагрузки.

Входная и выходная части твердотельного реле гальванически развязаны при помощи оптопары. Твердотельное реле не имеет отдельного источника питания. И если входная часть ТТР питается от входного источника питания, то выходная часть питается через нагрузку, получая питание при условии, что эта нагрузка подключена.

Таким образом, если нагрузка имеет высокое сопротивление, с одной стороны, это хорошо – меньше ток через реле, и оно меньше испытывает перегрузки, работая с большим запасом. Но если этот ток продолжить уменьшать, ТТР просто не сможет работать – хотя, входная индикация будет показывать, что всё нормально.

Виды устройств

Для корректной работы твердотельного реле при маленьких токах нагрузки соизмеримых с током утечки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке. В соотношении с методом коммукации выделяют: устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции; реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание; реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. А теперь давайте рассмотрим более детально процесс изготовления устройства.

Параметры мощности — от 3 до 32 Вт.

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 — источник напряжения управления; 2 — оптопара внутри корпуса реле; 3 — источник тока нагрузки; 4 — нагрузка Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Выбор и покупка твердотельного реле Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Характеристики твердотельного реле

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC доступны другие опто-триаки. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор. От типа и особенностей развязки зависят общие конечные характеристики прибора и особенности его работы.

Отличия несущественные, на работу не влияют никак. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

Комментарии

Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор. Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели

Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии

Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет. Охлаждение Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах. Твёрдотельное реле. Что это такое и как работает? Испытание на практике

Особенности эксплуатации

Как понятно из принципа работы, твердотельное реле актуальнее всего использовать в случаях, когда за малый период времени необходимо большое количество раз подать и снять нагрузку. Электромеханические приборы с такой задачей справляются плохо, быстро теряют свои свойства и просто-напросто ломаются. В них регулярно нужно очищать контакты, и даже, если вы будете это делать, риск выгорания или залипания контакта всё равно огромен.

Твердотельные приборы, в свою очередь, обеспечивают высокую надёжность, а также тихую и бесперебойную работу. Кроме того, они обладают компактными размерами. Но при этом имеют заметно большую стоимость, чем электромеханические узлы. Поэтому, если имеет место фактор экономии, полупроводники не всегда являются оптимальным вариантом.

Для правильной эксплуатации прибора, а также, если вы хотите знать, как проверить твердотельное реле, стоит запомнить следующие тезисы:

  • Соединение в устройствах производится винтовым методом. Пайка для данной цели не используется.
  • Дабы не нарушить целостность корпуса и не допустить выхода прибора из строя, оградите его попадания пыли, частиц металла и любых механических воздействий извне.
  • Держите реле как можно дальше от легко возгораемых предметов. Не трогайте устройство в активной фазе его работы, существует риск получения ожога.
  • Прежде чем включить прибор, проверьте, верно ли реализована коммутация.
  • Если температура корпуса достигла отметки свыше 60°C, поместите прибор на охлаждающий радиатор.
  • Ни в коем случае не допускайте короткого замыкания на участке выхода. Это приведёт к мгновенной поломке устройства.

Трехфазные реверсивные реле

  • Главная
  • Реле твердотельное (ТТР / SSR)
  • Трехфазные реверсивные реле

Твердотельное реле – полупроводниковый прибор, предназначенный для бесконтактной коммутации цепей постоянного и переменного тока по сигналу управления. Это новый тип бесконтактных электрических реле собранных по современным мировым стандартам и технологиям. Благодаря своим характеристикам твердотельные реле все чаще заменяют электромагнитные реле и контакторы. Твердотельные реле применяются в системах управления нагревом, освещением, электродвигателями, трансформаторами, электромагнитами и т.д.

Особенности реле:

  • Длительный срок службы
  • Управляющее напряжение 10-30V DC
  • Коммутация по 3-м фазам
  • Отсутствие дребезга контактов и искрения при переключениях
  • Высокое сопротивление изоляции между коммутируемой и управляющей цепью
  • Встроенная RC-цепь и защита от одновременного включения
  • Светодиодная индикация направления вращения

Расшифровка номенклатуры

  1. GDH – Вид твердотельного реле
  2. GDM – однофазные твердотельные реле в корпусе промышленного исполнения (100 – 500А)
  3. GTH – трехфазные твердотельные реле (10 – 120А)
  4. GTR – реверсивные твердотельные реле (10 – 40А)
  5. 40 – рабочий ток 40А (от 10 до 500А)
  6. 48 – рабочее напряжение 24-480V AC, 38 – 24-380V AC, 23 – 5-220V DC
  7. ZD3 – тип управляющего сигнала (способ коммутации)
  8. LA – аналоговый сигнал 4-20мА (фазовое управление)
  9. VD – аналоговый сигнал 0-10V DC (фазовое управление)
  10. ZD – управление 10-30V DC (коммутация при переходе через ноль)
  11. ZD3 – управление 3-32V DC (коммутация при переходе через ноль)
  12. ZA2 – управление 70-280V AC (коммутация при переходе через ноль)
  13. DD3 – управление 3-32V DC (коммутация напряжения постоянного тока)

Варианты исполнений

Выходное напряжение Управляющее напряжение Номинальный коммутируемый ток
10A 25A 40A
480V AC “перек. В 0” 10-30V DC GTR1048ZD GTR2548ZD GTR4048ZD

Технические характеристики и условия эксплуатации:

Модификация твердотельного реле GTRxxxxxZD
Коммутируемое напряжение 48-480V AC 47-63Гц
Управляющее напряжение 10-30V DC
Потребляемый ток в цепи управления ≤40mA
Напряжение вкл./выкл. 8V DC/5V DC
Максимальное пиковое напряжение 1000V AC
Максимальный пиковый ток 10А:100А, 25А:250А, 40:400А в течении 10мс
Падение напряжения в цепи нагрузки ≤1,6V AC
Ток утечки (выключенное состояние) ≤10мА
Время переключения ½ цикла
Светодиодная индикация Зеленый -прямое вращение Красный – обратное вращение
Напряжение пробоя 2500V AC в теч. 1 минуты
Сопротивление изоляции 500МОм при 500V DC
Температура окружающей среды -30…+75°C
Относительная влажность ≤80º (без образования конденсата)
Габаритные размеры 105х74х33мм
Способ монтажа Винтами на монтажную поверхность
Масса ≤450г

Примечание:

  • Реле подбирается с учетом пускового тока двигателя
  • Для защиты реле от перенапряжения применяйте варисторы установленные параллельно цепи нагрузки
  • Для эффективного отвода тепла обязательно использовать радиаторы (и возможно вентилятор)
  • Не переключайте реверс до полной остановки двигателя!
  • Для изменения направления вращения используйте 3-позиционный переключатель с фиксацией в среднем положении (стоп)

Схемы подключения:

Внешний вид и габаритные размеры:

Вернутся в раздел: Твердотельные реле / Maxwell твердотельные реле

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным током
управление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Возможности использования однофазных реле напряжения

Однофазные реле напряжения представляют собой электрические устройства, которые могут быть использованы для контроля и защиты электрических цепей в различных приложениях. Они обычно используются в трехфазных системах электроснабжения для контроля напряжения в одной из фаз.

Основные возможности использования однофазных реле напряжения:

  1. Контроль подачи электроэнергии: Однофазные реле напряжения могут использоваться для контроля наличия или отсутствия напряжения в сети. Они могут быть установлены в электрических щитах или распределительных устройствах в зданиях и помещениях, чтобы обеспечить защиту оборудования от повреждений при временном или постоянном отсутствии напряжения.
  2. Защита от перенапряжений: Однофазные реле напряжения могут быть использованы для защиты оборудования от повышенного напряжения. Они могут отслеживать напряжение в сети и при обнаружении перенапряжения мгновенно отключать электрическую цепь, чтобы предотвратить повреждения оборудования.
  3. Управление электромеханическими устройствами: В некоторых случаях однофазные реле напряжения могут использоваться для управления работой электромеханических устройств, таких как насосы или вентиляторы. Они могут включать или выключать эти устройства на основе заданных уровней напряжения.
  4. Мониторинг энергопотребления: Однофазные реле напряжения могут быть использованы для мониторинга энергопотребления в сети. Они могут отслеживать напряжение в реальном времени и предоставлять информацию о потребляемой мощности в определенный момент времени. Это может быть полезно для повышения энергоэффективности и оптимизации расходов на энергию.

Однофазные реле напряжения являются важными компонентами электрической системы и широко используются в различных отраслях, включая промышленность, коммерческую сферу и бытовые потребители. Их применение позволяет обеспечить безопасность и стабильность работы электрических цепей и устройств.

Бесконтактные и поляризованные агрегаты

Также разрабатываются поляризованные бесконтактные переключатели. Они представляют собой электронные устройства, идентичные поляризованным электромагнитным установкам по функциональности, но собранные совсем по другому принципу. Это полупроводниковые электронные образцы, разработанные по технологии магнитных усилителей. Подобные агрегаты великолепно проявляют себя в условиях мощных ударов, вибраций.

Приборы собираются по принципу магнитных усилителей и имеют несколько обмоток. Реактивное сопротивление отрицательным или положительным полуволнам на вторичной обмотке изменяется при подмагничивании сердечников постоянным напряжением определенного направления. Зачастую обыкновенным неполяризованным устройством усиливается изменение вторичного напряжения.

Принцип действия

В твердотельных реле взаимодействие управляющего сигнала с управляемым происходит путем формирования гальванической развязки – как правило, с помощью оптрона. Управляющее напряжение подает питание на светодиод, а он, в свою очередь, освещает фотодиод, и с помощью тока последнего включается МОП или тиристор, управляющий нагрузкой. Тиристоры и симисторы используются в устройствах, применяемых при переменном токе, а транзисторы – в приборах с постоянным током. Также применяются и специализированные оптоэлектронные приборы – оптотиристоры и фототиристоры.

Структура ТТР включает:

  • вход – первичная цепь, состоящая из резистора на постоянном изоляторе, имеющего последовательное подключение. Главной функцией входной цепи является принятие сигнала и передача его устройству реле, коммутирующему нагрузку;
  • оптическая развязка – используется для изоляции входной и выходной сети переменного тока;
  • триггерная цепь – отдельный элемент, обрабатывающий входной сигнал и переключающий выход;
  • цепь переключателя – подает силу напряжения, включает в себя транзистор, симистор и кремниевый диод;
  • цепь защиты – может быть внешней или внутренней, защищает устройство от сбоев или появления ошибок.

Для коммутации индуктивной нагрузки при помощи твердотельного реле необходимо увеличить запас тока не менее, чем в 6–8 раз.

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Твердотельное реле — принцип работы

Твердотельное реле — это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Это интересно: Производители автоматических выключателей – рейтинг лучших фирм: изучаем развернуто

Различные способы коммутации контакта

Слаботочными можно называть поляризованные переключатели по объемам коммутируемой мощности. Через контакты реле переменного тока для 24 вольт проходит энергия меньше нескольких десятков миллиампер. Почти во всех видах устройств такого типа предусмотрен «перекидной» контакт. Для изделий на 24 В мощности характерна пружинная система якоря.

Такие переключатели могут разделяться на два основных вида по методу коммутации:

  • После снятия управляющего напряжения обмотки контакты размыкаются. Доступны три основных положения для якоря такого переключателя,
  • После снятия мощности обмоток состояние коммутации запоминается.

Для надежной работы источников электроэнергии в авиации используется специально разработанный поляризованный силовой переключатель.

Характеристики

Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Рассмотрим основные характеристики наиболее популярных из отечественных твердотельных реле (КИПприбор – KIPpribor, Cosmo, Протон):

  1. ТМ-0 оснащены встроенный схемой «ноль», через которую осуществляется переход фаз;
  2. ТС могут включаться в любой момент фазы;
  3. Самые известные – это контроллеры ТМВ, ТСБ, ТСВ (их еще называют ТМА), ТСА, ТМБ. Они выходной RC-цепью и используются для управления в системах потенциального управления;
  4. ТС/ТМ относятся к силовым. Ток доходит до 25мА;
  5. ТСА и ТМА имеют основное назначение – специальные чувствительные к перепадам напряжения приборы;
  6. ТСБ/ТМБ – это низковольтные модели (до 30 В);
  7. ТСВ/ТМВ – высоковольтные (от 110 до 280В).

Иностранными аналогами являются Carlo Gavazzi, (SSR) Gefran (для инфракрасных активных нагрузок), Finder и CPC (модель SCC).

Основные характеристики TSR-25DA:

ТипПеременный, постоянный ток
Ток срабатывания7.5 мА / 12 VDC
Управляющее напряжение4 – 32 В
Утечка ампер12,5 мА при 380 В
Время реагирования20 мс

90-280VAC, 25A/240VAC от Crydom:

УправлениеAC
Управляющее напряжение, В90–280
Напряжение размыкания, В10
Выходной каскадтиристорный
Контактынр
Коммутируемое переменное напряжение, В20–280
Максимальный ток нагрузки, А25

Твердотельное реле SSR–F 10 DA – H SSR:

ТипПостоянный ток
Срабатывание7,5 мА
Электрическая прочность изоляции вход/выход2,5 кВ
Утечка15,5 мА при 440 В
Реагирование15 мс

Отличия и плюсы твердотельных реле (в сравнении с электромеханическими)

При выборе ТТР у покупателя возникает ряд вопросов — зачем переплачивать за твердотельное реле, в чем его преимущества перед стандартными электромеханическими устройствами. Выделим главные плюсы:

Небольшие габариты, что исключает проблемы с поиском места для монтажа.
Отсутствие шума и вибрации

Это важно, если устройство устанавливается в помещениях, где находятся люди.
Высокая скорость коммутации.
Продолжительный ресурс, обусловленный отсутствием износа механической и электрической части.
Постоянное выходное сопротивление, которое не меняется в течение срока эксплуатации. Кроме того, контактные группы не подвержены окислительным процессам.
Нет резких изменений напряжения в процессе переключения.
Нет искр, что расширяет сферу применения. Его установка допускается на объектах, где имеются повышенные риски взрывов и появления пожара.
Низкая чувствительность к внешним факторам, к примеру, появлению магнитных полей, вибрациям, повышенному уровню пыли или магнитным полям.
Высокий уровень сопротивления между выходом и входом.
Низкое потребление энергии.
Большое число коммутаций, которое не ограничивается производителем

В реальности оно достигает 109.

Его установка допускается на объектах, где имеются повышенные риски взрывов и появления пожара.
Низкая чувствительность к внешним факторам, к примеру, появлению магнитных полей, вибрациям, повышенному уровню пыли или магнитным полям.
Высокий уровень сопротивления между выходом и входом.
Низкое потребление энергии.
Большое число коммутаций, которое не ограничивается производителем. В реальности оно достигает 109.

Виды ТТР

Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:

  • По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
  • По виду коммутируемого напряжения – переменное или постоянное.
  • По количеству фаз для переменного напряжения – одна или три.
  • Для трехфазных – с реверсом или без.
  • По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.

Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.

Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:

SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В

SSR FOTEK DC-DC – твёрдотельные реле постоянного тока

Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.

Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.

Fotek 3 phase. Трехфазное твердотельное реле

Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.

Как подключить электродвигатель через магнитный пускатель – подробно расписано на СамЭлектрике здесь.

Управляющие контакты показаны поближе:

Fotek 3 phase. Входные управляющие контакты

Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.

Кто не в курсе – прямое вращение – это когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Как поменять направление вращения двигателя – поменять местами любые две фазы.

По теме рекомендую почитать мою статью по трем фазам и отличии трехфазного питания от однофазного.

Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.

А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!

Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.

Fotek TSR-40AA-H 3 phase 40A

Вроде всё, пишите, у кого какой опыт по применению!

Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:

Какие параметры важны при выборе твердотельных реле?

Эти полупроводниковые устройства приобретают в соответствии с запланированной областью применения. При покупке учитывают:

  • мощность – запас мощности должен превышать величину, необходимую для обслуживания определенного оборудования, в несколько раз, если модель используется для запуска асинхронного двигателя, то запас должен составлять 6-10 раз;
  • материал изготовления корпуса, его соответствие условиям, в которых будет эксплуатироваться устройство;
  • габариты корпуса;
  • тип крепежных элементов;
  • моментальное или постепенное быстродействие;
  • наличие дополнительных эксплуатационных возможностей;
  • энергопотребление;
  • бренд.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий