Почему необходимо разделять PEN-проводник на PE и N

Зачем может понадобиться такое разделение

С необходимостью разделения проводов электрики сталкиваются при реконструкции старых построек. Обычно в них установлена устаревшая система TN-C, которую, в согласии с последними требованиями ПУЭ, необходимо заменить на TN-C-S.

Чаще всего заземление заменяется во время реконструкции проводки. Но многие люди, которых волнует вопрос безопасности своих домашних, предпочитают осуществить замену раньше, не дожидаясь реконструкции.

Чтобы перейти на более современный тип заземления, необходимо выполнить разделение PEN проводника на N и РЕ. При этом сделать это нужно правильно.

Ошибки при разделении PEN проводника на PE и N

Самой распространенной ошибкой при раздельной прокладке проводников PE и N является их объединение за точкой разделения. В нормальном состоянии аппаратуры по проводнику РЕ не должен протекать ток, а в результате объединения он начинает работать как рабочий ноль (нейтральный проводник). Как результат – неправильная работа устройств защитного отключения (УЗО). Распространенный вариант ошибки – установка перемычек между нулем и заземляющим контактом (РЕ) розетки. Наиболее тяжелые последствия такого объединения возникают в случае обрыва нулевого проводника до места подключения в розетке.

Вторая ошибка – выполнение раздельных контуров заземления для различных устройств в одном здании. В таком случае на различных концах проводника РЕ возникает разность потенциалов, что приведет к протеканию тока в РЕ проводнике. При обрыве РЕ между устройствами, возможно поражение электрическим током. Еще такое подключение может вызвать сбои в работе цифрового оборудования.

Третья ошибка – использование в качестве заземлителя РЕ проводника арматуры здания или водопроводных труб. Арматура дома не гарантирует надежного контакта с землей, а водопровод может иметь места, поврежденные коррозией или непроводящие пластиковые вставки. Если заземление РЕ выполнено на водопровод в нескольких квартирах, то может возникнуть ситуация как во второй ошибке.

Сечение

Сечение защитного проводника выбирают по таблице 54.2 из ГОСТ Р 50571.5.54-2013 : Минимальная площадь поперечного сечения защитных проводников (когда не рассчитывают в соответствии с 543.1.2 ГОСТ Р 50571.5.54-2013/МЭК 60364-5-54:2011)

Сечение медных линейных проводников S, мм2Минимальное сечение соответствующего защитного проводника, выполненного, мм2
из медииз других металлов
S ≤ 16S(k1/k2)*S
16 < S ≤ 35161)(k1/k2)*16
S > 35S/21)(k1/k2)*(S/2)
k1 — значение коэффициента k для линейного проводника, рассчитанного по формуле приложения А.54.1 ГОСТ Р 50571.5.54 или взятого из таблицы 43А ГОСТ Р 50571.4.43-2012 в соответствии с материалом проводника и изоляции. Если материал проводника медь, то k1 = 226, если алюминий, то k1 = 148, если сталь, то k1 = 78.

k2 — значение коэффициента k для защитного проводника, выбранного из таблиц A.54.2-A.54.6 ГОСТ Р 50571.5.54 в соответствии с условиями применения.

1) Для PEN-проводника, уменьшение сечения возможно только при выполнении ограничений по выбору сечения нейтрального проводника (см. ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009)

Либо рассчитывают в соответствии с пунктом 543.1.2 ГОСТ Р 50571.5.54-2013. Сечение защитных проводников должно быть не менее чем :

  • сечения, выбранного в соответствии с указаниями МЭК 60949;
  • или сечения, рассчитанного по нижеследующей формуле, применяют только при времени отключения сверхтока не более 5 с.

Где

  • S — сечение, мм2 ;
  • I — действующее значение ожидаемого тока замыкания на землю для повреждения с пренебрежимо малым полным сопротивлением, который может протекать через защитное устройство (см. МЭК 60909-0), А;
  • t — время отключения защитным устройством тока замыкания на землю (тока повреждения), с;
  • k — коэффициент, зависящий от материала защитного проводника, изоляции, прилегающих частей, начальной и конечной температуры.

Коэффициент k в данном случае должно выбираться по таблицам A.54.2-A.54.6 , либо рассчитываться по следующей формуле:

  • Qc — объемная теплоемкость материала проводника при 20 °С, Дж/°С·мм3;
  • β — величина, обратная температурному коэффициенту удельного сопротивления проводника при 0 °C, °C;
  • ρ20 — удельное электрическое сопротивление материала проводника при 20 °C, Ом·мм;
  • θf — конечная температура проводника, °C;
  • θi — начальная температура проводника, °C.
Материал проводникаβ, °CQc , Дж/°С·мм3ρ20, Ом·мм
Медь234,53,45·10-317,241·10-6
Алюминий2282,5·10-328,264·10-6
Сталь2023,8·10-3138·10-6

Значения параметров для различных материалов (из таблицы A.54.1 ГОСТ Р 50571.5.54-2013) Если в результате расчетов получено нестандартное сечение, следует использовать защитный проводник с ближайшим большим стандартным сечением.

Примечания к этому пункту:

1) Следует учитывать токоограничение за счет импеданса цепи и ограничение I2t аппаратом защиты.

2) Указания по ограничению температуры во взрывоопасных средах приведены в МЭК 60079-0.

3) Для кабелей с минеральной изоляцией (МЭК 60702-1) в случае, когда стойкость к току короткого замыкания металлической оболочки кабеля больше, чем у линейных проводников, не требуется рассчитывать сечение металлической оболочки, используемой в качестве защитного проводника.

Важно! В соответствии с пунктом 543.1.3 ГОСТ Р 50571.5.54-2013 сечение любого защитного проводника, который не является жилой кабеля или не проложен в общей оболочке с линейными проводниками, должно быть не менее:

  • 2.5 мм2 (медь) или 16 мм2 (алюминий) , если есть механическая защита;
  • 4 мм2 (медь) или 16 мм2 (алюминий), если механическая защита отсутствует.

То есть, другими словами:

При этом, защитный проводник, не являющийся частью кабеля, считается механически защищенным, если он проложен в трубе, коробе или другим подобным способом.

Если защитный проводник является общим для двух или более цепей, то его сечение выбирают следующим образом :

  • рассчитывают в соответствии с 543.1.2 ГОСТ Р 50571.5.54-2013, исходя из максимально ожидаемого тока замыкания на землю и времени отключения в этих цепях;
  • или выбирают по таблице 54.2 ГОСТ Р 50571.5.54-2013 для наибольшего сечения линейного проводника, входящего в состав этих цепей.

Цветовая и буквенная идентификация

Защитные проводники должны быть идентифицированы посредством двухцветной желто-зеленой комбинации, согласно ГОСТ 33542-2015 . Буквенно-цифровая идентификация защитного проводника должна быть «PE». Эту идентификацию применяют также для защитного заземляющего проводника.

Комбинация желтого и зеленого цветов предназначена только для идентификации защитного проводника.

Рис. 7. Буквенно-цифровое обозначение проводников для трехфазных электроустановок зданий

Согласно п. 6.3.2 ГОСТ 33542-2015:

Рис. 8

Идентификация защитного проводникаВажно знать! Согласно п. 6.1 ГОСТ 33542-2015, идентификация посредством цветов или меток не требуется для:

  • металлических оболочек или брони кабелей в случае, когда их используют в качестве защитного проводника;
  • сторонних проводящих частей, используемых в качестве защитного проводника; открытых проводящих частей, используемых в качестве защитного проводника.

Системы заземления

Основой конструкции систем безопасности от удара током является схема включения обмоток электрической машины на электростанции или подстанции. Несмотря на то, что источником электроэнергии является электрический генератор, он отделен от потребителей целой системой электропередачи. Она состоит из трансформатора, проводников и дополнительного оборудования. Но поскольку электрогенератор трехфазный, вся последующая электросеть передачи электроэнергии также трехфазная. Но ее конфигурацию задают обмотки трансформаторов.

Для оптимального использования мощности каждой фазы, в том числе и с возможностью построения однофазных электросетей, обмотки трансформатора соединяются звездой. Из точки соединения всех трех обмоток исходит проводник, именуемый нейтралью. Существуют электрические сети, в которых она соединена с заземляющим устройством. В этом случае получается глухо заземленная нейтраль. Также существуют сети, в которых отсутствует специальное соединение с заземляющим устройством. В этом случае получается изолированная нейтраль.

Но ее изолированность условная. Существует емкость проводников относительно земли, а также эквивалентное сопротивление относительно земли прочих элементов электрической сети. Поэтому для изолированной нейтрали характерно сопротивление относительно земли с той или иной величиной. Когда электрооборудование присоединяется к электросети с напряжением до 1000 В с одной из двух типов нейтрали применяются дополнительные защитные проводники:

  • PE (от английских слов Protective Earth),
  • заземляющий,
  • уравнивания потенциалов.

Также используются рабочие проводники, предназначенные для прохождения токов нагрузки между потребителями и нейтралью:

  • нулевой нейтральный (N),
  • совмещенные нулевые защитный рабочий (PEN).


Так выглядит заземляющее устройство. Комбинация желтого и зеленого цветов изоляции обязательна только для провода РЕ и прочих защитных проводов

Выбор системы заземления для частного дома

Можно почитать форум , а также статью “”

Для современного частного сектора подходят только две системы заземления ТТ и TN-C-S. Практически весь частный сектор запитывается от трансформаторных подстанций с глухозаземлённой нейтралью и четырёхпроводной ЛЭП (три фазы и PEN, объединённый рабочий и защитный ноль или, иначе говоря, объединённый ноль и земля).

Особенности системы заземления TN-C-S

Согласно п. 1.7.61 ПУЭ  при применении системы TN рекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Т.е. проводник PEN на вводе в дом повторно заземляется и делится на PE и N. После этого используется 5 или 3 проводная проводка.

Коммутация PEN и PE строго запрещена (ПУЭ 7.1.21. Во всех случаях в цепях РЕ и РЕN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы). Точка разделения должна стоять до коммутационного прибора. Запрещается разрывать PE и PEN проводники.

 Недостаток системы TN-C-S

при обрыве PEN проводника на корпусах заземлённых электроприборов может оказаться опасное напряжение.

Описание системы TN-C-S – Описание системы TN-C-S
только на современных ЛЭП выполненных проводом СИПрекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе в электроустановки зданий,обязательно должны быть выполнены повторные заземления на ЛЭП. 

Согласно п. 1.7.135 ПУЭ когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.

Для обеспечения высокого уровня безопасности от поражения электрическим током в системе TN-C-S необходимо использовать устройства защитного отключения (УЗО).

Особенности системы заземления ТТ

Описание системы ТТ – Описание системы ТТ
защитный проводник PE заземляется независимо от нулевого рабочего проводника N и запрещена какая-либо связь между ними.

Систему TT рекомендуется применять при неудовлетворительном состоянии питающей воздушной линии электропередач (ВЛ) (старые неизолированные провода ВЛ, отсутствие повторного заземления на опорах).

Замечание

 СП 31-106-2002 “ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ИНЖЕНЕРНЫХ СИСТЕМ ОДНОКВАРТИРНЫХ ЖИЛЫХ ДОМОВ” устанавливает, что электроснабжение жилого дома должно осуществляться от сетей напряжением 380/220 В с системой заземления TN-C-S.

Внутренние цепи должны быть выполнены с раздельными нулевым защитным и нулевым рабочим (нейтральным) проводниками.

Правила монтажа системы ТТ:

  1. Установка УЗО на вводе с уставкой 100-300 мА (пожарное УЗО).
  2. Установка УЗО с уставкой не более 30 мА (желательно 10 мА – на ванную) на все групповые линии (защита по току утечки от прикосновения к токоведущим частям электрооборудования при появлении неисправностей в электропроводке дома).
  3. Нулевой рабочий проводник N не должен соединяться с местным контуром заземления и шиной РЕ.
  4. Для защиты электрических приборов от атмосферных перенапряжений необходимо устанавливать ограничители перенапряжения (ОПН) или ограничители импульсных перенапряжений (ОПС или УЗИП).
  5. Сопротивление контура заземления Rc должно удовлетворять условию ПУЭ (п. 1.7.59):
    • при УЗО с уставкой в 30 мА сопротивление контура заземления (заземлителя) – не более 1666 Ом;
    • при УЗО с уставкой 100 мА сопротивление контура заземления (заземлителя) – не более 500 Ом. 

Для выполнения вышесказанного условия достаточно будет использовать один вертикальный заземлитель в виде уголка или прутка длиной около 2-2,5 метра. Но я рекомендую выполнить контур более тщательно, забив несколько заземлителей (хуже не будет).

Недостатки системы ТТ:

  1. При коротком замыкании фазы на землю на корпусах электроприборов будет опасный потенциал (ток короткого замыкания недостаточен, чтобы сработал автомат защиты, поэтому обязательна установка УЗО – ПУЭ 1.7.59).

Указанный недостаток системы можно нейтрализовать установкой реле контроля напряжения и УЗО (2-х каскадная схема с одним “пожарным” или селективным УЗО на весь дом и несколькими УЗО на всех линиях потребителей).

Особенности разделения PEN проводника

В частных домах и в городских квартирах в целях исключения воровства электроэнергии представители контролирующей организации вправе требовать, чтобы провод PEN был протянут до счетчика. И лишь после учетного прибора они разрешают разделять его на защитную шину PE и рабочую N. Такое подключение не противоречит требования ПУЭ, но гораздо естественней смотрится разделение, выполненное до счетчика.

Если сначала сделать разделение, а потом опломбировать вводной автомат, никаких возражений со стороны представителей «Энергосбыта» и инспекторов быть не может.

  • Как определить обрыв электропроводки в стене под штукатуркой
  • Источники питания для светодиодных светильников — расчет и схемы
  • Виды и технические характеристики ответвительных коробок

Зачем гадать и переводить с иностранного буквенное обозначение систем распределения электроэнергии, когда расшифровка приводится в ПУЭ (см. п. 1.7.3). Причём, расшифровка буквы Т разная, зависит от того какая буква Т по счёту в аббревиатуре. Из той же расшифровки можно понять, что защитное заземление проводящих корпусов электрооборудования используется только в системах IT и TT. А это редко используемые системы, особенно система IT. В основном для питания потребителей используют систему TN (TN-C, TN-C-S, TN-S). Это система с глухозаземлённой нейтралью трансформатора, где проводящие электрический ток корпуса электрооборудования электрически присоединяются к глухозаземлённой нейтрали трансформатора, т.е. зануляются (выполняется защитное зануление; см. ПУЭ, п. 1.7.31). Защитное зануление никто ещё не отменял и его определение (что это такое) есть в ПУЭ. Вывод: в системах TN заземление корпусов не используется совсем в виду его бесполезности (при пробое изоляции на корпус не обеспечивает безопасный ток через человека). Основная мера защиты в системах TN это автоматическое отключение питания, которое как раз и обеспечивается защитным занулением. Дополнительная мера защиты – применение УЗО. Поэтому никаких договоров с соседями и устройств заземляющих контуров делать не надо, всё уже сделано как надо. Единственное, что можно сделать, это преобразовать систему TN-C (у кого такая) в систему TN-C-S. Но здесь также используется зануление.

{SOURCE}

Защитные проводники (PE-проводники)

1.7.121. В качестве PE-проводников в электроустановках напряжением до 1 кВ могут использоваться: ¶

1) специально предусмотренные проводники: ¶

  • жилы многожильных кабелей;
  • изолированные или неизолированные провода в общей оболочке с фазными проводами;
  • стационарно проложенные изолированные или неизолированные проводники;

2) открытые проводящие части электроустановок: ¶

  • алюминиевые оболочки кабелей;
  • стальные трубы электропроводок;
  • металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления.

Металлические короба и лотки электропроводок можно использовать в качестве защитных проводников при условии, что конструкцией коробов и лотков предусмотрено такое использование, о чем имеется указание в документации изготовителя, а их расположение исключает возможность механического повреждения; ¶

3) некоторые сторонние проводящие части: ¶

  • металлические строительные конструкции зданий и сооружений (фермы, колонны и т.п.);
  • арматура железобетонных строительных конструкций зданий при условии выполнения требований 1.7.122;
  • металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).

1.7.122. Использование открытых и сторонних проводящих частей в качестве PE-проводников допускается, если они отвечают требованиям настоящей главы к проводимости и непрерывности электрической цепи. ¶

Сторонние проводящие части могут быть использованы в качестве PE-проводников, если они, кроме того, одновременно отвечают следующим требованиям: ¶

1) непрерывность электрической цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищенными от механических, химических и других повреждений; ¶

2) их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости. ¶

1.7.123. Не допускается использовать в качестве PE-проводников: ¶

  • металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а также свинцовые оболочки проводов и кабелей;
  • трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;
  • водопроводные трубы при наличии в них изолирующих вставок.

1.7.124. Нулевые защитные проводники цепей не допускается использовать в качестве нулевых защитных проводников электрооборудования, питающегося по другим цепям, а также использовать открытые проводящие части электрооборудования в качестве нулевых защитных проводников для другого электрооборудования, за исключением оболочек и опорных конструкций шинопроводов и комплектных устройств заводского изготовления, обеспечивающих возможность подключения к ним защитных проводников в нужном месте. ¶

1.7.125. Использование специально предусмотренных защитных проводников для иных целей не допускается. ¶

1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл.1.7.5. ¶

Таблица 1.7.5. Наименьшие сечения защитных проводников. ¶

Сечение фазных проводников, мм 2

Наименьшее сечение защитных проводников, мм 2

S16

16 35

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным. ¶

Допускается, при необходимости, принимать сечение защитного проводника менее требуемых, если оно рассчитано по формуле (только для времени отключения 5 с): ¶

где S — площадь поперечного сечения защитного проводника, мм 2 ¶

I — ток короткого замыкания, обеспечивающий время отключения поврежденной цепи защитным аппаратом в соответствии с табл.1.7.1 и 1.7.2 или за время не более 5 с в соответствии с 1.7.79, А; ¶

t — время срабатывания защитного аппарата, с; ¶

k — коэффициент, значение которого зависит от материала защитного проводника, его изоляции, начальной и конечной температур. Значение k для защитных проводников в различных условиях приведены в табл.1.7.6-1.7.9. ¶

Таблица 1.7.6.Значение коэффициента k для изолированных защитных проводников, не входящих в кабель, и для неизолированных проводников, касающихся оболочки кабелей(начальная температура проводника принята равной 30 °С) ¶

Для чего разделять PEN на две части

Правильное разделение

Разделять ПЕН провод на жилы PE и N имеет смысл лишь в том случае, когда каждую из них предполагается использовать по своему прямому назначению. Это удается сделать в следующих случаях:

  • в частном (загородном) доме, когда в распределительном щите делается отвод от PE шины, используемый для организации местного повторного заземления;
  • в городском многоквартирном доме, где жильцы подъезда договорились обустроить общий заземляющий контур на улице рядом с подъездом;
  • медный спуск ведется от провода PE к самодельному заземляющему контуру.

Когда в городских домах в подъездном щитке между шинами ставится перемычка, говорить о полноценном заземлении не приходится. В нормативной документации по этому поводу приводится рекомендация без подробного объяснения действия такого «заземления».

Зачем нужно разделение PEN проводника

Основной причиной для разделения провода PEN являются требования ПУЭ п.7.1.13, в котором указано, что все электроустановки, кроме низковольтных (12 В, 36 В и т.п.), должны иметь заземление TN-S с отдельными проводами PE и N либо более дешёвого типа TN-C-S с разделением PEN-провода. При несоблюдении этих условий возможно отключение здания от электроснабжения контролирующими организациями.

Кроме того, этого требуют здравый смысл и законы электротехники:

  • При использовании системы TN-C корпус электроприбора фактически не заземляется, а зануляется. Поэтому обрыв провода PEN приводит к тому, что на нейтральном контакте розетки, заземляющем выводе и корпусе электрооборудования оказывается напряжение сети 220В.
  • Самое частое место этого обрыва — внутридомовые сети. Обычно они выполняются более тонким проводом, чем кабель, подходящий к зданию.
  • На вводном квартирном щитке устанавливается два предохранителя или автоматический выключатель, разрывающий цепь PEN. Даже если используется спаренный автомат, нельзя исключить возможность «залипания» фазного контакта. Это отключение приводит к эффекту, аналогичному обрыву провода PEN.

Поэтому разделение PEN проводника обеспечивает бОльшую безопасность людей, живущих в доме.

Разделение PEN проводника

Правила, по которым производится разделение, описаны в ПУЭ п.п.1.7 и 7.1:

  • самым удобным местом для разделения является вводной электрощит, до вводного автоматического выключателя, рубильника или общедомового электросчётчика;
  • схема должна быть смонтирована так, чтобы исключить отключение, в том числе аварийное, цепей PEN и PE;
  • автоматические выключатели и рубильники, согласно ПУЭ п.1.7.145, допускается устанавливать только в цепи нейтрали N;
  • проводник PEN подключается к шине РЕ, или главной заземляющей шине ГЗШ, которая должна соединяться с нейтральной планкой;
  • проводники РЕ и N после разделения не соединяются;
  • нельзя использовать общую шину для нейтрали и заземления.

Исходя из этих правил, во вводном щите монтируются две шинки — нейтральная N и заземляющая ГЗШ. Вводной проводник PEN и заземляющий провод внутренней проводки РЕ подключаются к заземляющей шине. К ней же присоединяется контур заземления здания. Эта планка соединяется с нейтральной шиной N перемычкой.

Важно! Сечение проводника PEN вводного кабеля быть не менее 10мм² при использовании медного провода и 16мм², если кабель алюминиевый.

Последовательность разделения PEN-проводника «с нуля»

Для того, чтобы понять правильность данной процедуры, необходимо ознакомиться с примером её последовательности. При отсутствии соответствующего образования и допуска до электротехнических работ, выполнять процесс самостоятельно не рекомендуется.

  1. Перед началом монтажа следует отключить напряжение. Для этого достаточно перевести автоматический выключатель, который является основным, в нижнее положение. После его выключения необходимо проверить с помощью индикаторной отвёртки отсутствие опасного потенциала.
  2. Можно приступать к монтажу шин. Используют специальные медные или алюминиевые пластины с готовыми отверстиями под болты. Если под рукой таких нет, то их можно изготовить самостоятельно, подойдёт обыкновенная сталь, в которой с помощью дрели и свёрл делают отверстия.
  3. Шина рабочего ноля крепится к щитку через изоляторы. Это делают в целях безопасности, так как бывают короткие замыкания в распределительных коробках, при которых отгорает ноль и соприкасается с фазой. Автоматический выключатель в данной ситуации не сработает, но нулевая шина будет под напряжением.
  4. Вторую шину, выполняющую роль заземления, можно крепить сразу к щитку, не используя изоляторы. После закрепления, на рабочую шину и шину заземления необходимо нанести соответствующую маркировку. По стандартам ПУЭ, ноль должен быть помечен синим цветом, а на заземлении установлен специальный знак. Чтобы не тратить время, знаки заземления и ноля можно приобрести в магазине, специализирующимся на электротехнической продукции.
  5. Между планками необходимо закрепить перемычку. Для этих целей также подойдёт пластина, выполненная из того же материала что и шины.
  6. На нулевую пластину, посредством болтовых соединений, крепятся только нулевые проводники. Такие провода также должны иметь синюю или голубую маркировку. На защитную шину монтируют провода заземления (с жёлто-зелёной изоляцией). При болтовом соединении следует обязательно использовать шайбы или не будет достигнут требуемый контакт.

Следует помнить, что лучше не выполнять вышеописанную процедуру, не имея знаний и опыта в области электрики или электротехники.

Зачем нужна перемычка между PE и N шинами?

Перемычка необходима, чтобы сработал вводный защитный автомат. При отсутствии перемычки и попадании фазы на корпус оборудования ток уйдет в землю, а не к трансформатору.

Если взять среднее значение сопротивления заземляющей цепочки в 20 Ом – тока утечки будет недостаточно для отключения автоматического выключателя. Цепь будет продолжать функционировать пока не перегорит поврежденный участок или не произойдет полноценное короткое замыкание. Ситуация может привести к удару током, порче оборудования и пожару.

В таком случае поможет УЗО – устройство защитного отключения, но полагаться только на него не стоит, потребуется двухфакторная защита – без нее подключение не примет энергонадзор. УЗО рекомендуется устанавливать в любом случае.

Последовательность разделения PEN-проводника «с нуля»

Для того, чтобы понять правильность данной процедуры, необходимо ознакомиться с примером её последовательности. При отсутствии соответствующего образования и допуска до электротехнических работ, выполнять процесс самостоятельно не рекомендуется.

  1. Перед началом монтажа следует отключить напряжение. Для этого достаточно перевести автоматический выключатель, который является основным, в нижнее положение. После его выключения необходимо проверить с помощью индикаторной отвёртки отсутствие опасного потенциала.
  2. Можно приступать к монтажу шин. Используют специальные медные или алюминиевые пластины с готовыми отверстиями под болты. Если под рукой таких нет, то их можно изготовить самостоятельно, подойдёт обыкновенная сталь, в которой с помощью дрели и свёрл делают отверстия.
  3. Шина рабочего ноля крепится к щитку через изоляторы. Это делают в целях безопасности, так как бывают короткие замыкания в распределительных коробках, при которых отгорает ноль и соприкасается с фазой. Автоматический выключатель в данной ситуации не сработает, но нулевая шина будет под напряжением.
  4. Вторую шину, выполняющую роль заземления, можно крепить сразу к щитку, не используя изоляторы. После закрепления, на рабочую шину и шину заземления необходимо нанести соответствующую маркировку. По стандартам ПУЭ, ноль должен быть помечен синим цветом, а на заземлении установлен специальный знак. Чтобы не тратить время, знаки заземления и ноля можно приобрести в магазине, специализирующимся на электротехнической продукции.
  5. Между планками необходимо закрепить перемычку. Для этих целей также подойдёт пластина, выполненная из того же материала что и шины.
  6. На нулевую пластину, посредством болтовых соединений, крепятся только нулевые проводники. Такие провода также должны иметь синюю или голубую маркировку. На защитную шину монтируют провода заземления (с жёлто-зелёной изоляцией). При болтовом соединении следует обязательно использовать шайбы или не будет достигнут требуемый контакт.

Следует помнить, что лучше не выполнять вышеописанную процедуру, не имея знаний и опыта в области электрики или электротехники.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий