Принцип работы и схема подключения тепловых реле

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

  • РТЛ;
  • РТТ;
  • РТИ;
  • ТРН;
  • твердотельные;
  • РТК;
  • РТЭ.

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Цифровые температурные реле ТР-100, ТР-101, ТР-102

Цифровое температурное реле ТР-102 (управление отоплением) предназначен для поддержания температуры в четырех зонах с помощью контактов терморегулятора (биметаллический датчик). Поддержание температуры происходит в циклическом режиме с индикацией текущей зоны контроля. Прибор позволяет осуществлять следующие функции: • Поддержание температуры в четырех тепловых зонах по циклической схеме; • блокировку управления не контролируемых зон; • отображение текущей контролируемой зоны, и времени ее контроля на встроенном светодиодном цифровом индикаторе. • передавать компьютеру данные о контролируемых зонах по стандартному протоколу Modbus RTU; • программирование кнопками на лицевой панели и через ПК; • сохранение настроек при отключении питания; • защита настроек от несанкционированных изменений; ТР-102 имеет универсальное питание и может использовать любое напряжение от 24 до 260В, независимо от полярности. В качестве датчиков ТР-102 использует биметаллический датчик терморегулятора (логика работы задается пользователем при программировании).

Цифровое температурное реле ТР-101 предназначено для измерения и контроля температуры устройства по четырем независимым датчикам, подключаемым по двух- или трехпроводной схеме, с последующим отображением температуры на дисплее. Может быть использовано в различных отраслях промышленности, коммунального и сельского хозяйства. Прибор позволяет осуществлять следую щие функции: • измерение температуры по четырем независимым каналам с помощью стандартных датчиков; • регулирование температуры по пропорционально-интегрально-дифференциальному (П ИД) закону, с выходным ключевым элементом (реле); • двухпозиционное регулирование температуры; • отображение текущего измеряемого значения температуры на встроенном светодиодном цифровом индикаторе; • передачу компьютеру значения измеренных температур контролируемых датчиков по стандартному протоколу Modbus RTU; • определение обрыва или замыкания линий подключенных датчиков; • цифровую фильтрацию и коррекцию измеряемой температуры; • программирование кнопками на лицевой панели и через П К; • сохранение настроек при отключении питания; • защита настроек от несанкционированных изменений. ТР-101 имеет универсальное питание и может использовать лю бое напряжение от 24 до 260В,независимо от полярности.

ТР-100 предназначен для измерения и контроля температуры устройства по четырем датчикам, подключаемым по двух — или трех проводной схеме, с последующим отображением температуры на дисплее и выдачей сигналов тревоги при выходе каких либо параметров за установленные пределы. Может применяться для защиты: •двигателей и генераторов; •трехфазных сухих трансформаторов с дополнительным контролем температуры сердечника или окружающей среды. ТР-100 имеет универсальное питание и может использовать любое напряжение от 24 до 255В, независимо от полярности. В качестве датчиков температуры ТР100 может использовать следующие типы: •PT100 – платиновый датчик с номинальным сопротивлением 100 Ом, при 0 °С; •PT1000 – платиновый датчик с номинальным сопротивлением 1000 Ом, при 0 °С; •KTY83 – кремниевый датчик с номинальным сопротивлением 1000 Ом, при 25 °С; •KTY84 – кремниевый датчик с номинальным сопротивлением 1000 Ом, при 100 °С; •PTC (1, 3, 6 последовательное включение) холодное сопротивление датчика 20-250 Ом;

Реле, оборудованные термосопротивлением ПТК

Это еще одна категория тепловых реле, обладающих способностью отслеживать температуру и защищать электродвигатель от перегруза. Обладая компактными размерами, они обладают низкой тепловой инерцией и малым временем реакции.

В число достоинств этих реле входит:

  1. Защита от перегрузки при повышении температуры воздуха.
  2. Защита при повреждении вентиляционной системы.
  3. Предупреждение неправильной работы двигателя при значительном увеличении частоты запусков электродвигателя.
  4. Предупреждение от неправильной работы, связанной с толчковыми режимами.

Основные компоненты, из которых состоит тепловое реле

В комплект устройства тепловых реле входят следующие элементы, без которых невозможна их полноценная работа в качестве прибора управления электродвигателем:

  • Термистор ПТК (положительный температурный коэффициент), его месторасположение предопределено в месте, наиболее подвергающемуся нагреву: подшипники разных видов, обмотка статора и прочее. Они обладают статичными свойствами, их сопротивление повышается при достижении номинального температурного порога.
  • Электронное устройство, которое получает питание от сети постоянного или переменного тока и производит замеры сопротивления подключенного датчика. При достижении температурных границ номинального значения в устройстве происходит скачок величины сопротивления термистора. Он расположен в цепи порогового элемента в общей конструкции устройства, следствием его функций является срабатывание реле на выходе из цепи.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Как отрегулировать реле на холодильнике

Выполнять такую процедуру рекомендую в следующих случаях:

  • задняя стенка полностью покрыта инеем. Если наледь присутствует лишь на половине стенки, то регулировка не поможет;
  • слишком низкая температура в холодильной камере.

Такие причины регулировки относятся к двухкамерным агрегатам. В однокамерных достаточно проверить распределение льда в морозилке. Если ее внутренние стенки полностью покрыты инеем, то процедура может принести результат. В случае отсутствия изморози на каком-либо участке и постоянной работы мотора причина неисправности кроется в утечке фреона, деформации уплотнителя или непроходимости фильтра.

Отрегулировать термостат человеку без опыта сложно. Специалисты тратят не меньше суток на подобную процедуру, если агрегат двухкамерный. Регулировка термостатов однокамерных холодильников занимает в 2 р. меньше времени, так как их режим работы и отдыха намного короче.

Рассмотрим, как отрегулировать устройство на примере термостата Danfoss 25Т65 для двухкамерного холодильника:

  • ручку управления поставьте в среднее положение;
  • если закрутите центральный регулировочный болт, то агрегат отключится. Если немного открутите, то длительность работы холодильника увеличивается;
  • второй болт расположен с наружной части. Им регулируют время стоянки агрегата. Если открутите, то будет стоять дольше, закрутите — меньше.

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

  • В чем отличия между контактором и магнитным пускателем
  • Что такое релейная защита
  • Как собрать трехфазный щит

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из:

  • немагнитного основания с обмоткой из меди, дополненной тканевой, синтетической изоляцией или (чаще) диэлектрическим лаковым покрытием;
  • металлического сердечника;
  • пружин;
  • якоря;
  • соединителей;
  • контактной пары.

Когда ток подается на обмотку электромагнита или соленоида, якорь, соединенный с контактом, притягивается к сердечнику, происходит замыкание электрической или электронной цепи. Если сила тока уменьшается до заданного показателя, пружина воздействует на якорь, который в свою очередь возвращается в исходное положение, цепь размыкается, происходит отключение потребителей.

Резисторы обеспечивают более плавную и точную работу. С помощью конденсаторов системы защищают от перепадов напряжения и искрения.

Электромагнитный соленоид (простейшая схема):

Большинство модификаций электромагнитных реле оснащены несколькими парами контактов, что обеспечивает одновременное управление несколькими цепями. Принцип работы коммутационного устройства представляет собой электромагнитную индукцию. Простота эксплуатации обеспечивает безотказную работу устройств.

Ключевые характеристики реле:

  • чувствительность — то есть реакция на силу, с которой ток подается на обмотку, чтобы устройство включилось;
  • сопротивление обмотки электромагнита;
  • напряжение срабатывания обозначает минимальную величину тока для переключения контактов;
  • напряжение отпускания в виде параметра тока, при котором коммутационное устройство отключается;
  • время, за которое притягивается и отпускается якорь;
  • частота срабатывания с рабочей нагрузкой на контактах.

Как обозначается на схеме

Ремонт, подключение или разработка электрооборудования выполняются с помощью специальных схем

Так как реле является важным компонентом системы, важно знать, как оно обозначается схематично. Существует международный классификатор с буквенно-графическими обозначениями коммутационного устройства. На электрических схемах реле представлено в виде прямоугольника

Выводы питания показывают от наибольших его сторон. Буквенное обозначение функционального назначения реле:

На электрических схемах реле представлено в виде прямоугольника. Выводы питания показывают от наибольших его сторон. Буквенное обозначение функционального назначения реле:

  • KA – тока;
  • KV – напряжения;
  • KB – блокировки;
  • KBS – блокировки от многократного включения;
  • KH – указательное;
  • KL – промежуточное;
  • KQ – фиксации положения выключателя;
  • KSV – контроля цепи напряжения;
  • KSP – контроля давления;
  • KSH – контроля напора;
  • KSL – контроля уровня жидкости;
  • KSR – скорости;
  • KSQ – состава вещества;
  • KW – мощности;
  • KZ – сопротивления.

Схематичное обозначение коммутационного устройства:

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов

Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В660
Частота переменного тока, Гц50 (60)
Время срабатывания при токе 1,2 Iном, мин20
Время ручного возврата, мин, не менее1,5
Время срабатывания при нагрузке 6-кратным Iном, сРТЛ-10004,5 … 9,0
РТЛ-20004,5 … 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток:до 10А0,5
свыше 10А1,0
Тип релеДиапазон регулирова-ния номинального тока несрабатывания, АМощность, потребляемая одним полюсом реле, ВтТип релеДиапазон регулирова-ния номинального тока несрабатывания, АМощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-10010,10 … 0,172,05РТЛ-10082,40 … 4,001,87
РТЛ-10020,16 … 0,262,03РТЛ-10103,80 … 6,001,84
РТЛ-10030,24 … 0,401,97РТЛ-10125,50 … 8,001,68
РТЛ-10040,38 … 0,651,99РТЛ-10147,00 … 10,01,75
РТЛ-10050,61 … 1,001,8РТЛ-10169,50 … 14,02,5
РТЛ-10060,95 … 1,61,8РТЛ-102113,0 … 19,02,75
РТЛ-10071,50 … 2,601,8РТЛ-102218,0 … 25,02,8
Номинальный ток 80А
РТЛ-205323 … 322,43РТЛ-205947 … 643,69
РТЛ-205530 … 413,03РТЛ-206154 … 744,38
РТЛ-205738 … 523,3РТЛ-206363 … 865,62

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем. Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН. Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2. Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт.

Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ. На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Устройство автоматического выключателя

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

N2 = (T – 30)/10

где Т – температура окружающей среды, °С.

Шаг третий:

N = N1 + N2

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Выводы и полезное видео по теме

Видео #1. Обзор принципа действия, типов и основных неисправностей пускозащитного реле:

Видео #2. Признаки поломок распространенного пускового реле РКТ. Подключение внешнего конденсатора для компенсации нестабильного напряжения:

Видео #3. Прозвон двигателя и реле. Ремонт катушки:

Несложная конструкция пускового реле позволяет самостоятельно находить неисправности и легко устранять их. Для этого не нужны глубокие знания в электрике или специальный инструмент.

Однако необходимо соблюдать пунктуальность, так как от качества проведенных работ зависит функциональность дорогостоящего оборудования.

Хотите рассказать о том, как подбирали пусковое реле для восстановления работоспособности холодильного агрегата? Располагаете полезными сведениями по теме статьи, которыми стоит поделиться с посетителями сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фотоснимки, задавайте вопросы.

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке – примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них – для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая – для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 – 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 – зона срабатывания из холодного состояния, 2 – зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 – 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий