Виды теплоносителей для системы отопления, их оптимальные параметры и пример расчета объема

На что ориентироваться при выборе

Прежде чем проектировать систему отопления, определитесь, какой теплоноситель будет в ней использоваться, поскольку от этого зависят некоторые особенности конструкции. Для работы на незамерзающей жидкости потребуется расширительный бак большего объёма и трубы большего диаметра.

Перед монтажом радиаторов разберите их и убедитесь, что используются паронитовые или тефлоновые прокладки. То же относится и к другим разъёмным соединениям, для резьбовых соединений используйте паклю изо льна и герметизирующую пасту. Вместо автоматических воздухоотводчиков, не рассчитанных на антифриз, понадобятся краны Маевского.

Расход теплоносителя в системе отопления

Расход в системе теплоносителя подразумевает массовое количество теплоносителя (кг/с), предназначаемое для подачи нужного количества тепла в обогреваемое помещение. Расчет теплоносителя в отопительной системе определяется как частное от деления расчетной тепловой потребности (Вт) помещения (помещений) на теплоотдачу 1 кг теплоносителя для обогрева (Дж/кг).

Некоторые советы по наполнению системы отопления теплоносителем на видео:

Расход теплоносителя в системе в продолжение отопительного сезона в вертикальных системах центрального отопления изменяется, поскольку они регулируются (особенно это касается гравитационной циркуляции теплоносителя — детальнее: «Расчет гравитационной системы отопления частного дома — схема «). На практике в расчетах обычно расход теплоносителя измеряют в кг/ч.

Функции теплоносителя в системе отопления

Как правильно выбрать жидкость теплоноситель для отопления? Для этого следует определиться с его назначением для систем теплоснабжения. Расчет его характеристик входит в проектирование. Поэтому необходимо знать функциональные особенности воды или антифриза в отоплении.

Теплоносители для отопления

Основная задача, которую должен выполнять безопасный теплоноситель для систем отопления – это передача тепловой энергии от котла батареям и радиаторам.

В автономном отоплении этот процесс осуществляется с помощью нагревательного элемента, который повышает температуру теплоносителя до требуемого уровня. Затем температурное расширение и работа циркуляционного насоса создают должную скорость горячей воды для ее транспортировки к радиаторам системы.

До того как рассчитать объем теплоносителя в системе отопления рекомендуется ознакомиться с его второстепенными функциями:

  • Частичная защита стальных элементов от коррозии. Это будет происходить только при минимальном содержании кислорода в воде и отсутствии вспенивания. Было замечено, что в незаполненном отоплении ржавление происходит намного быстрее;
  • Охладитель для циркуляционного насоса. Наиболее распространенная модель насоса имеет так называемый «мокрый ротор». Даже если будет достигнута максимальная температура теплоносителя в системе отопления — он все равно будет снижать уровень нагрева силового агрегата насоса.

На эти функции влияют параметры теплоносителя системы отопления. Поэтому при выборе следует внимательно изучить характеристики воды или антифриза. В противном случае фактические параметры теплоснабжения не будут совпадать с расчетными, что приведет к созданию аварийной ситуации.

Заливка Тосола в систему отопления

Как отмечалось выше, использование Тосола оправдано только в экстренных ситуациях, чтобы залить Тосол в систему отопления, работы выполняют в следующей последовательности:

  • Сливают теплоноситель через заливочный вентиль, расположенный в самой нижней точке рядом с водонагревательным котлом (эта возможность должна быть предусмотрена на этапе проектирования системы).
  • Снимают, очищают и устанавливают на место грязевой фильтр, затем с помощью недорогого вибрационного электронасоса (Малыш) заливают в систему воду под стандартным давлением не более 2 бар.
  • После заполнения трубопровода перекрывают входной вентиль, включают котел отопления для нагрева воды и циркуляционный электронасос. Выставляют температуру нагрева около 60 С. и прокачивает воду в течение часа, по завершении времени отслеживают состояние грязевого фильтра.
  • Если на картридже фильтра остается слишком много грязи, выключают циркуляционный электронасос и котел, сливают воду, очищают фильтр и заново повторяют всю процедуру промывки.

Рис. 12 График вязкостей антифризов

  • Убедившись, что грязь в системе практически отсутствует, после слива воды приступают к заливке Тосола. Его выливают в емкость большого объема, погружают туда вибрационный насос и начинают накачивать в систему под давлением около 2 бар.
  • Обычно контура теплых полов подключены через коллекторы, на которых размещены автоматические воздухоотводчики для стравливания воздуха – они справляются со своей задачей без присутствия человека. На радиаторах отопления стравливать воздух придется вручную через краны Маевского. Для этого плоской отверткой или ключом откручивают шлиц в верхней части радиатора и сливают теплоноситель, так обходят все батареи, начиная с верхних этажей. При падении давления после слива теплоносителя периодически проводит его подкачку.
  • Стравливание воды из радиаторов и подкачку повторяют повторно, затем включают циркуляционный электронасос и котел на температуру около 60º С и далее вручную проверяют батареи на равномерность нагрева с двух сторон. Если одна половина радиатора нагревается меньше, снова спускают воздух и подкачивают антифриз.
  • При повышенном пенообразовании во время закачки антифриза отключают все оборудование на несколько часов, давая Тосолу возможность отстояться.

Тосол имеет невысокий срок службы, определить его конечную фазу можно визуально – если жидкость имеет ржавую окраску, это говорит о разложении ингибиторов и контур срочно освобождается от теплоносителя.

Рис. 13 Отопительные котлы в частном доме

Параметры антифризов

Антифризы — водные растворы различных веществ, которые представлены многообразием вариантов. В них добавляют присадки, помогающие скорректировать физические свойства полученных жидкостей. Самыми востребованными являются антифризы на основе:

  • Этиленгликоля. Для него характерна доступная цена и хорошие теплофизические показатели. Однако этиленгликоль является токсином и относится к третьему классу опасности, поэтому его нельзя применять в бытовой сети отопления.
  • Полипропиленгликоля. Такой раствор безвреден для организма человека и экологически безопасен. Он отличается хорошими теплофизическими свойствами и способствует снижению гидродинамического сопротивления. Рабочая среда на основе полипропиленгликоля обладает меньшей плотностью, благодаря чему тепловая энергия быстрее распространяется по сети.

Применение антифриза благоприятно сказывается на состоянии уплотнителей и прокладок, продлевая срок их службы. Поскольку температура замерзания в среднем составляет -65 °C, то его можно использовать в частном доме с периодическим проживанием или при отсутствии блока аварийного питания, если источником тепла является электрический котел. Однако при заливке антифриза в сеть требуется постоянный контроль его кислотности. Превышение уровня pH, рекомендованного для радиаторов, может привести к появлению коррозии.

Необходимо обеспечить и герметичность сетей, исключив вероятность утечки антифриза. Этого можно достичь, используя межсекционные прокладки и уплотнители из силикона и паронита.

Воду можно выбрать для тех сетей обогрева, которые функционируют непрерывно в течение отопительного сезона. Ее слив из системы на время отсутствия владельцев загородной недвижимости приводит к ускорению коррозионных процессов.

Расчет объема теплоносителя в отоплении

Перед заполнением системы теплоносителем необходимо правильно рассчитать его объем. Он напрямую зависит от схемы теплоснабжения, количества компонентов и их габаритных характеристик. Именно они влияют на количество теплоносителя в системе отопления.

Виды труб для отопления

Сначала анализируются параметры подающей магистрали

Важное значение имеет материал ее изготовления. Для вычисления объема теплоносителя в системе отопления необходимо знать внутренний диаметр трубы

Согласно современным нормативам в артикуле стальных трубопроводов дается внутренний размер сечения, а для пластиковых принят наружный. Поэтому в последнем случае необходимо вычесть две толщины стенки.

Для того чтобы самостоятельно рассчитать объем теплоносителя в системе отопления не нужно делать вычисления. Достаточно воспользоваться данными из нижеприведенной таблицы. С ее помощью можно сделать расчет количества теплоносителя в системе теплоснабжения.

Диаметр, мм

Объем теплоносителя (л) в 1 м.п. трубы, в зависимости от материала изготовления

Стальные

Полипропиленовые

Металлопластиковые

15

0,177

0,098

0,113

20

0,314

0,137

0,201

25

0,491

0,216

0,314

32

0,804

0,353

0,531

40

1,257

0,556

0,865

Имея эту информацию достаточно по схеме теплоснабжения определить протяженность труб определенного диаметра и умножить получившееся значение на объем в 1 м.п. Таким способом рассчитывается объем теплоносителя в системе теплоснабжения, но только в трубах.

Размеры радиатора отопления

Но помимо подающих магистралей в схеме отопления присутствуют радиаторы и батареи. Они также влияют на объем теплоносителя в системе теплоснабжения. Каждый производитель указывает точную вместительность отопительного прибора. Поэтому оптимальным вариантом расчета буде изучение паспорта батареи и определение количества требуемой жидкости теплоносителя для теплоснабжения.

Если же это невозможно по ряду причин – можно воспользоваться приблизительными цифрами. Стоит отметить, что при большом количестве батарей погрешность вычислений будет увеличиваться. Поэтому для точного расчета количества теплоносителя в системе теплоснабжения рекомендуется узнать паспортные характеристики батареи. Это можно сделать на сайте производителя в разделе технической информации.

В таблице показан средний объем теплоносителя для одной секции в алюминиевых, биметаллических и чугунных радиаторов отопления.

Тип радиатора

Межцентровое расстояние, мм

300

350

500

Алюминиевые

0,36

0,44

Биметаллические

0,16

0,2

Чугунные

1,1

1,45

Эти цифры необходимо умножить на общее количество секций в системе отопления. Затем к полученным данным следует прибавить уже рассчитанный объем воды в трубах и можно определить общее количество теплоносителя в системе отопления.

Однако следует помнить, что при сравнении теплоносителей для систем теплоснабжения отмечалось, что со времен объем может уменьшаться по объективным причинам. Поэтому для поддержания работоспособности системы следует периодически добавлять в нее теплоноситель.

Антифриз

Итак, если вы остановили свой выбор на антифризе, то вам следует знать, что он не должен быть легко возгораемым, а также в нем не должны содержаться ядовитые или токсичные вещества.

Важно! Не используйте в качестве теплоносителя для отопления тосол, этиловый спирт или же масло для трансформаторов! Ознакомившись с техникой безопасности, вы сами выясните, что для отопления должны быть использованы лишь те вещества, которые специально для этого создавались

Желательно применять специальный сертифицированный антифриз, к примеру, очень популярен сегодня dixis 65. Зачастую все теплоносители этого вида производятся на основе двух веществ:

  • Пропиленгликоль.
  • Этиленгликоль.

Другие варианты

Установка подпиточных насосов или расширительного бака также требует проведения соответствующих расчетов. В этом случае для определения суммарного объема отопительной системы необходимо сложить объемы отопительных приборов (радиаторов), котла, а также трубопроводной части системы. Формула расчета выглядит следующим образом: V = (VS x E)/d, где d – показатель эффективности устанавливаемого бака (расширительного), Е – коэффициент расширения жидкости (выражается в процентах), VS – объем системы (общий), включающий теплообменники, котел, трубы, а также радиаторы, V – объем расширительного бака.

О коэффициенте расширения жидкости следует сказать отдельно. Этот показатель может иметь два значения, которые зависят от типа системы. Для расчета отопительных систем на воде его значение составляет 4%. Если же необходимо рассчитать систему этиленгликоля, то тогда коэффициент расширения принимается на уровне 4,4%.

К менее точным способам оценки объема можно отнести способ, использующий показатель мощности. Принимается, что 1 кВт равен 15 литрам жидкости. Причем при осуществлении приблизительного расчета нужно знать только мощность отопительной системы. В то же время детальная оценка объемов отопительных приборов, котла и трубопроводов не требуется. Рассмотрим конкретный пример. Допустим, что отопительная мощность домостроения составляет 75 кВт. Тогда общий объем системы составит: VS = 75 х 15 = 1125 литров.

Обязательно нужно учитывать, что факт использования современных элементов отопительной системы (труб или радиаторов) несколько снижает ее суммарный объем. Наиболее полную информацию по этому вопросу можно найти в технической документации производителя того или иного элемента.

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) — V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Незамерзающие жидкости на основе этиленгликоля

Этиленгликоль, который используется для изготовления антифризов, представляет собой прозрачную маслянистую жидкость без запаха. Это двухатомный спирт, для которого характерна устойчивость к замерзанию при минусовых температурах. Технология производства термагентов предусматривает разбавление этиленгликоля водой для получения состава с заданной температурой начала кристаллизации, а также добавление карбоксилатного пакета многофункциональных присадок. Этиленгликоль токсичен, поэтому термагенты на его основе рекомендованы к применению в системах, где вероятность соприкосновения человека с антифризом минимальна. Хорошим выбором для отопительной системы может быть теплоноситель Thermagent -65 ˚C на основе высококачественного очищенного этиленгликоля. Антифриз создавался для использования в качестве рабочей жидкости закрытых систем отопления жилых и производственных зданий, систем охлаждения производственного оборудования, чиллеров, холодильных агрегатов и т. д.

Нюансы, о которых надо знать, для выполнения гидравлического расчета системы радиаторного отопления.

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Способы регулировки температуры систем отопления

Регулировка температуры отопления в собственных домах позволяет достигать более комфортного пребывания в помещениях в отопительный сезон.

Как делалось это раньше? Ни а какой регулировки температуры систем отопления и речи не было. Были печи, контрамарки и их растапливали до условного состояния «тепла». И как итог, зачастую в первый день после топки в доме было через чур жарко, на второй самый раз, а на третий день приходилось топить опять.

С появлением систем водяного отопления ситуация немного улучшилась и благодаря водяному отоплению получили свое развитие способы регулировки температуры систем отопления.

Точное регулирование температуры систем отопления решает две особо важные задачи:

  • Максимально комфортное пребывание в доме, где используется именно та температура, которую Вы задаете;
  • Экономия энергоносителей и Ваших денег за счет точной регулировки.

2 способа регулировки систем отопления

По сути, существует два метода регулировки температуры.

  1. Количественный. Это метод изменения скорости движения нагретой воды с помощью специальной запорной арматуры или же циркуляционного насоса. По факту мы ограничиваем подачу теплоносителя в систему через отопительное оборудование.

Самый простой пример реализации данного способа – это изменение скорости работы насоса. Чем холоднее, тем сильнее работает насос и тем с большей скоростью перемещает теплоноситель по системе отопления.

  1. Качественный. Данный метод подразумевает регулировку температуры всей системы на отопительном приборе (на котле и тд.)

Способы регулировки радиаторов отопления

Самый простой вариант регулировки температуры систем радиаторного отопления – это монтаж термоголовки непосредственно на радиатор.

https://youtube.com/watch?v=aLraaIYT9Qk

Принцип работы термоголовки состоит в следующем: Головка заполнена жидкостью. Объем жидкости напрямую зависит от температуры теплоносителя. При нагреве объем жидкости увеличивается и клапан термоголовки закрывается. При остывании происходит обратный процесс.

Такой способ регулировки довольно простой  и надежный. К недостаткам можно отнести ручную регулировку термоголовки на каждом радиаторе.

Более продвинутый способ – это монтаж сервопривода вместо термоголовки с последующим монтажом термостата в помещении и соединения всех узлов в единую систему.

Звучит на первый взгляд сложно. Но на самом деле все достаточно просто реализуется. На сервопривод кидаете два кабеля. Один на питание, другой на подключение термостата. На термостате задаете нужную температуру и сервопривод автоматически ее регулирует.

Способы регулировки температуры теплых полов

Регулировки температуры отопления теплого пола посвящена уже не одна статья на нашем сайте. Если в кратце, то  есть следующие варианты:

  1. Регулировка температуры теплого пола в связвке с накладным термодатчиком на коллекторе и циркуляционным насосом. Датчик щупает температуру на коллекторе (изначально завышенную) и как только получает нужную, отключает питание у насоса.
  2. Монтаж насоса на подачу в паре с трехходовым клапаном. Благодаря трехходовому клапану происходит подмес теплого пола до нужной температуры.
  3. Монтаж теплого пола с помощью смесительного модуля. В смесительном модуле есть все необходимое для регулировки температуры системы отопления теплого пола.
  4. Аналогичный радиаторному. Монтаж на коллектор сервоприводов в связке с терморегуляторами.

Более подробно прочитайте в статье 4 способа регулировки температуры теплого пола

Как бонус. Вот Вам относительно бюджетный и точный способ регулировки температуры теплого пола:

Читайте так же:

Факторы, влияющие на работу котла

Они таковы:

  1. Конструкция. У техники может быть 1 или 2 контура. Она может монтироваться на стену или на пол.
  2. Нормативный и действительный КПД.
  3. Грамотное обустройство отопления. Мощь техники сопоставима с площадью, которую нужно обогреть.
  4. Технические кондиции котла.
  5. Качество газа.

Вопрос по конструкции.

У аппарата может быть 1 или 2 контура. Первый вариант дополняется бойлером косвенного нагревания. Во втором уже есть всё необходимое. И ключевой режим в нём – обеспечение горячей водой. Когда вода подаётся, отопление завершается.

У моделей, монтируемых на стену, мощь скромнее, чем у тех, что ставятся на пол. И они могут обогревать максимум 300 кв.м. Если ваша жилая площадь больше, потребуется аппарат напольного размещения.

П.2 факторы КПД.

В документе к каждому котлу отражён нормативный параметр: 92-95%. У конденсационных модификаций – примерно 108%. Но действительный параметр, как правило, ниже на 9-10%. Ещё больше он снижается из-за тепловых потерь. Их список:

  1. Физический недожог. Причина — лишний воздух в аппарате, когда сжигается газ, и температура выходящих газов. Чем они больше, тем скромнее КПД котла.
  2. Химический недожог. Здесь важен объём окиси CO2, возникающий при сжигании углерода. Тепло теряется через стенки аппарата.

Методы повышение действительного КПД котла:

  1. Устранение сажи с трубопровода.
  2. Ликвидация накипи с водного контура.
  3. Ограничить тягу на дымоходе.
  4. Настраивать позицию дверки поддувала, чтобы тепловой носитель приобретал максимальную температуру.
  5. Устранение копоти на отсеке сгорания.
  6. Установка коаксиального дымохода.

П.3 Вопросы по отоплению. Как уже замечено, мощность аппарата обязательно соотносится с площадью обогрева. Нужен грамотный расчёт. Учитываются специфики сооружения и потенциальные потери тепла. Расчёт лучше доверить профессионалу.

Если дом построен по строительным нормативам, работает формула 100 Вт на 1 кв.м. Получается такая таблица:

Площадь (кВ.м.)Мощность.
МинимумМаксимумМинимумМаксимум
6020025
2003002535
3006003560
600120060100

Приобретать лучше котлы зарубежного производства. Также в продвинутых версиях много полезных опций, помогающих достичь оптимального режима. Так или иначе, оптимальная мощь аппарата находится в спектре 70-75% от наивысшего значения.

Оптимальный режим работы газового котла для экономии газа достигается при устранении тактования. То есть, нужно поставить подачу газа в наименьшее значение. В этом поможет прилагаемая инструкция.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий