Регулируемый стабилизатор тока на LM317 для светодиодов

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Подробнее

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором R* можно задать необходимый ток зарядки для конкретного аккумулятора.


Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

(729,7 KiB, скачано: 6 947)

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Примеры схем включения стабилизатора LM317

Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.

Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.

Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.

Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.

Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.

Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.

Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.

Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.

Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.

Как выбрать стабилизатор напряжения для газового котла отопления в сети 220 В

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Подбор стабилизатора напряжения для жилого помещения: как выбрать подходящее устройство для дома и квартиры

Как подключить однофазный стабилизатор напряжения на весь дом?

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Сбор аппарата

Когда схема проектирования выбрана и подготовлены все необходимые запчасти, можно смело приступать к созданию стабилизатора тока на lm317. Процесс производства, схема подключения должна осуществляться таким образом:

  1. Монтируется подобранный вид трансформаторного агрегата.
  2. Производится сбор каскадной схемы и выпрямительного оборудования.
  3. Спаиваются все полупроводниковые светодиоды.
  1. Производится определение выводов на системе. Их насчитывается всего три: вес, выход, вход. Чтобы в процессе не запутаться, нужно обозначить параметры на элементах соответствующими цифрами, от 1 до 3.
  2. Переверните агрегат таким образом, чтобы обозначенная вами нумерация имела начало с левой стороны.
  3. Проведите регулировку напряжения, стабилизируя параметры. Для этого минус поддайте на вывод «2» одновременно снимая настроенное значение интенсивности тока с третьего элемента.
  4. Исходя из выбранной вами схемы, осуществите монтаж остальных запчастей и поместите их в прочный пластиковый или алюминиевый корпус.

Форма изделия может быть различной, здесь все зависит от предпочтений пользователя и размерных параметров составляющих деталей.

Так выглядит самодельный СП в собранном виде

Если грамотно подобрать схему, следовать правилам подключения и производить процесс поэтапно, в результате может выйти качественный стабилизатора тока на lm317 микросхеме. Данный прибор послужит незаменимым агрегатом в каждой «домашней» лаборатории, специализированной на создании электротехнических устройств.

ВИДЕО: Самодельный стабилизатор напряжения для LED/светодиодов

Аналоги микросхемы LM317

Не всегда имеется возможность применить именно LM317. Тогда используют доступные аналогичные модели. К одним из них относятся следующие микросхемы:

  • ECG1900;
  • SG317;
  • UPC317;
  • GL317.

Еще существуют LM317 аналоги российского производства. Это микросхемы KP142EH12A и KP14EH12. Последний вариант – модель, которая может фиксировать напряжение.

Если возникают случаи, когда мощности LM317 недостаточно, тогда берут более мощную модель стабилизатора напряжения. Так, нередко используют LM350AT или LM350T. У этих вариантов наибольший электроток на выходе составляет 3 А. При этом их мощность равна 25 Вт. Еще применяют микросхему LM350K. У нее электроток равен 3 А, а мощность составляет 30 Вт. Также могут использовать стабилизатор напряжения LM338K с более высоким электротоком. Он составляет 5 А.

Видео описание

Это видео позволяет познакомиться с обзором и тестом стабилизатора напряжения LM317:

Безопасная эксплуатация стабилизатора напряжения

Микросхему LM317 никогда не применяют в критических условиях, всегда помня об ее эксплуатационных параметрах. Ведь у данного радиокомпонента официальная рассеивающая мощность равна 20 Вт. При этом у него разница напряжений на входе и выходе обязана быть меньше 40 В.

Когда выполняется пайка стабилизатора напряжения, то температура должна быть не более 260 ℃. При этом используется он исключительно в условиях, когда температура не превышает 125 ℃. В то же время никогда не забывают, что хранить микросхему можно при температуре от -65 до +150 ℃. Эти официальные характеристики всегда соблюдаются специалистами.

Профессионалы никогда не используют стабилизатор напряжения при наибольших и наименьших обозначенных параметрах. Ведь не соблюдение официальных характеристик уменьшает надежность и стабильность радиокомпонента. При этом специалисты всегда по возможности применяют радиатор отвода тепла.

Видео описание

На что способен радиокомпонент LM317 поможет узнать данный видеоматериал:

Коротко о главном

LM317 представляет собой общеизвестный среди электронщиков преобразователь. Другими словами, это стабилизатор напряжения. Его используют во время сборки усилителей звука, устройств зарядки, блоков питания, стабилизаторов тока и других электронных изделий

У этой микросхемы важно знать наибольшее входное напряжение (40 В), его выходной интервал (1,2-37 В), максимальный электроток на выходе (1,5 А) и другие характеристики

LM317 выпускается в разных корпусах, что влияет на его способ подсоединения, вариант монтажа, габариты и максимальную нагрузку. При этом к универсальной модели относится LM317T. Проверяется данный стабилизатор напряжения после создания простого стенда из макетной платы, которая функционирует от обычной батарейки.

Схемы включения

Сначала разберём стандартную схему, которую можно найти в технической документации на LM317T. На ней кроме самого стабилизатора находится два конденсатора, один из которых установлен на входе (ёмкостью 0,1 мФ), а второй на выходе (1,0 мФ). А также двух резисторов R1 и R1.

Как видно резисторы R1 и R2 подключены к управляющему выходу устройства по схеме делителя напряжения. Сопротивление R1 является постоянным и его величина, по рекомендациям производителя, должна быть равна 240 Ом. С помощью R2 можно регулировать выходное напряжение. Его можно найти по формуле:

В ней второе слагаемое мало, так как величина IADJ не может быть дольше 100 мА, поэтому его можно не учитывать в расчётах. Из формулы понятно, чем больше сопротивление R2, тем больше выходное напряжение.

Рассчитаем какое напряжение будет на выходе, если величина сопротивления R2 равна 1,5 кОм.

Как видно и расчёта, на выходе будет напряжение 9 В. Но чтобы получить данную разность потенциалов на вход нужно подать напряжение большей величины.

Часто возникает задача найти R2 зная необходимое напряжение стабилизации. Для этого можно использовать формулу:

Чтобы вам не пришлось делать расчёты вручную приведём таблицу, в которой все необходимые значения уже посчитаны (сопротивление R1 = 240 Ом).

Напряжение стабилизации, ВВеличина сопротивления R2, ОмБлижайшее стандартное значение, Ом
3336330
3,3393,6390
4,7662,4680
5720750
5,5816820
7,41180,81 200
914881 500
1016801 600
1220642 000
1526402 700
1832163 300
2036003 600
2545604 700
2749005 100

На LM317T легко собрать драйвер тока. Обычно такие схемы используются для питания отдельных светодиодов и светодиодных матриц. Производители рекомендуют использовать такую схему:

В этом примере выходной ток через светодиод устанавливается подбором сопротивления R1. Рассчитать его можно по формуле:

где Iout – ток на выходе стабилизатора, который равен току через светодиод.

Типичный ток через одиночный маломощный светодиод равен 0,02 А. Подставляем данное значение в формулу и получаем сопротивление R1 – 62,5 Ом. Чтобы резистор не перегорел нужно определить его мощность. Для этого используем формулу:

В нашем случае мощность резистора должна быть больше 0,022*62,5=0,024 Вт, то есть подойдёт любой резистор, даже самый маленький.

После стандартных примеров перейдём к реальной конструкции. Рассмотрим регулируемый блок питания, в котором можно регулировать напряжение на выходе в диапазоне от 1,2 до 30 В и рассчитанный на максимальный выходной ток в 10 А. При этом БП имеет защиту от короткого замыкания.

Данное устройство сделано из минимального количества недорогих деталей. Так как стабилизатор LM317T способен выдержать ток не более 1,5 А, то в конструкции используется транзистор MJE13009, благодаря которому на выходе можно получить ток равный 10 А.

Регулировка выходного напряжения осуществляется с помощью переменного резистора Р1 номиналом 5 кОм. Кроме этого в схеме используются шунтирующие резистора R1 и R2 с одинаковым сопротивлением – 200 Ом. После отключения питания конденсатор С1 разряжается через резистор R3 сопротивлением 10 кОм. На выходе трансформатора напряжение может быть от 12 до 35 В. Диодный мост можно брать любой, способный выдержать ток от 10 А и выше, например, GBJ2510 рассчитанный на 25 А.

Транзистор MJE13009 можно заменить на MJE13007 или отечественные КТ805, КТ808, КТ819 или другие

При выборе транзистора важно обращать внимание на силу тока на выходе стабилизированного блока питания

Используемый транзистор и LM317T нужно устанавливать на радиатор с достаточно большой для охлаждения площадью. Для этих целей можно использовать систему охлаждения компьютерного процессора. Не забудьте изолировать LM317T от радиатора теплопроводящей прокладкой. Также на радиатор желательно установить и диодный мост.

Выбираем ленту для машины

Постараюсь не лить воду, а кратко разберем на что обращать внимание при выборе светодиодной ленты

Тип светодиодной матрицы

Светодиодная подсветка салона. Для подсветки салона автомобиля, включая багажник выбирайте — SMD 3528 60шт/м (размер одного светодиодного кристалла — 3,5×2,8мм). Почему она?

Во-первых мы получаем среднюю мощность 4,4-4,8 Вт на погонный метр со световым потоком порядка 250-300 Лм. При такой мощности светодиоды не требуют теплоотвода и светодиодная лента спокойно монтируется на пластиковые элементы. А светового потока достаточно для полноценного освещения любых элементов салона.

Во-вторых это самая распространенная лента в продаже, покупаем в первом попавшемся магазине.

Варианты типа SMD 5050, 5630, 5730 не подойдут ввиду высокой мощности. Неприятно высокая яркость и необходимость монтировать но теплоотвод, делает их не самым удачным выбором для светодиодной подсветки салона машины.

Наружное освещение автомобиля. Тут включаем голову. Если LED подсветка под днищем авто, можно выбрать светодиоды помощнее — SMD 5050 30/60 шт/м. Алюминиевый профиль будет нашим теплоотводом (про монтаж дальше). Для светодиодной подсветки номера машины или (не дай бог) фар головного света — это плохой выбор. Подобная светодиодная подсветка будет приманкой для инспекторов ГИБДД (про правила установки и штрафы читайте в конце статьи).

Обычные светодиоды или RGB — разницы нет. RGB чуть дороже, ее сложнее подключать и требует дополнительно контроллера управления (подробнее про подключение RGB ленты). Зато она позволяет менять цвет подсветки.

Класс защиты

В продаже преимущественно три класса защиты – IP20, IP65, IP68.

  • IP20 – открытая лента без защитных покрытий, подходит для использования внутри сухих помещений. Боится влаги, пыли, любых механических воздействий.
  • IP65 – с защитным силиконовым слоем, способным защитить от конденсата.
  • IP68 – герметичные водонепроницаемая светодиоды, которые можно размещать на днище автомобиля.


Класс LED IP68 Для светодиодной подсветки бардачка или низа торпеды подойдет и IP20, если ее никто не будет дергать и поливать водой. Для подсветки остальных элементов желателен класс IP 65-68.

LM317 и LM337. Особенности применения. | РадиоГазета

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемы, для быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5

Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:. Увеличение по клику

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Схемы подключения

Стандартный вариант подключения LM317T представлен в виде 2 резисторов сопротивления и 3 конденсаторов, соединённых по схеме. Учитывая параметры сопротивления определяется выходное напряжение.

У стабилизатора есть две базовые характеристики: опорное напряжение (Vref) и ток, уходящий на выводе подстройки. Vref – это напряжение, поддерживаемое устройством на сопротивлении R1. Оно изменчиво и отличается в вариантах на 0,1 В. Для расчетов лучше использовать стандартную цифру в 1.25 В.

Для более массивных решений рекомендуется измерить параметр для каждого применяемого экземпляра. При этом, исходя из схемы, если замкнуть резистор R2, то выходное напряжение будет равно 1.25 В. При повышении вольтажа на том же участке будет расти и показатель опорного напряжения. В итоге, стабилизатор все время сравнивает выходные показатели через резистивный делитель с опорным. Меняя сопротивление корректируется и выходное напряжение.

Ток, исходящий на подстройке, является паразитным. Как сообщают изготовители, его значение находится в диапазоне от 50 до 100 мкА. В реальности оно может доходить до 500 мкА. Учитывая это, для стабильности опорного напряжение сопротивление на R1 не должно превышать 240 Ом. Таким образом, на делитель не будет направляться ток ниже 5 мА.

Для точности требуется подставить используемое значение R1 в простую формулу, где R2 = R1 х ((Uo/Uref)-1).

При этом в любом случае требуется охлаждение. Из-за серьезной разницы между входящим и конечным током происходит нагрев микросхемы. Это может привести к проблемам с работой устройства. Характеристик, описанных в технической документации, можно добиться только при помощи дополнительного радиаторного охлаждения.

Lm2576t adj схема включения с дополнительным транзистором

Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А , с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.

Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток — неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor’s позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД — до 80%. Выходной ток — до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.

Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена здесь на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.

Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток — до 3А. КПД — до 90%.

Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:

Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.

Стоимость печатной платы с маской и маркировкой: закончились

Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии

Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии

Краткое описание, схема и перечень компонентов набора здесь >>>

Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь сюда >>> или сюда >>>

Всем удачи, мирного неба, добра, 73!

Поделитесь в социальных сетях:FacebookX
Напишите комментарий