Основные параметры ИМС серии 555
Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме.
На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.
Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.
Качество сборки и производитель сильно влияют на условия эксплуатации таймера
Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555
Сфера применения реле времени
Области использования таймера:
- регуляторы;
- датчики;
- автоматика;
- различные механизмы.
Все данные устройства делятся на 2 класса:
- Циклические.
- Промежуточные.
Первое считается самостоятельным прибором. Он подает сигнал через заданный временной промежуток. В автоматических системах циклическое устройство включает и отключает необходимые механизмы. С его помощью управляют освещением:
- на улице;
- в аквариуме;
- в теплице.
Циклический таймер является неотъемлемым устройством в системе “Умный дом”. Его применяют для выполнения следующих задач:
- Включение и выключение отопления.
- Напоминание о событиях.
- В строго указанное время включает необходимые устройства: стиральную машинку, чайник, свет и др.
Кроме вышеуказанных, есть еще отрасли, в которых эксплуатируется циклическое реле задержки:
- наука;
- медицина;
- робототехника.
Промежуточное реле используется для дискретных схем и служит вспомогательным устройством. Оно осуществляет автоматическое прерывание электрической цепи. Сфера применения промежуточного таймера реле времени начинается там, где необходимы усиление сигнала и гальваническая развязка электрической цепи. Промежуточные таймеры разделяются на виды в зависимости от конструктивного исполнения:
- Пневматические. Срабатывание реле после поступление сигнала не происходит мгновенно, максимальная время срабатывания – до одной минуты. Используется в цепях управления металлорежущих станков. Таймер управляет приводами для ступенчатой регулировки.
- Моторные. Диапазон установки временной задержки начинается с пары секунд и заканчивается десятками часов. Реле задержки являются частью цепей защиты воздушных линий электропередач.
- Электромагнитные. Предназначены для цепей постоянного тока. С их помощью происходят разгон и торможение электропривода.
- С часовым механизмом. Основной элемент – взведенная пружина. Время регулирования – от 0,1 до 20 секунд. Используются в релейной защите воздушных линий электропередач.
- Электронные. Принцип действия построен на физических процессах (периодические импульсы, заряд, разряд емкости).
Что такое байпас в стабилизаторе напряжения — принцип работы стабилизаторов
Как сделать реле времени своими руками на базе микросхем
Изготовить реле на основе микросхем не составит труда для человека, который имеет хотя бы минимальные навыки.
Материалы и инструменты
Потребности лучше обозначать в общем виде. Многие электронные компоненты взаимозаменяемы, поэтому тратить бесконечное время на поиски конкретной детали бессмысленно. Потребуются резисторы, конденсаторы, транзисторы, микросхемы, промежуточные реле или переключатели, блоки питания или понижающие трансформаторы, катушки и т. д. Номиналы придётся подбирать по обстоятельствам.
В качестве основания прибора идёт основание для распайки элементов – печатная плата, диэлектрическая поверхность или каркас. Это добывается по возможности. Хорошо бы подобрать подходящий по размерам корпус. А работать нужно с маломощным паяльником, примерно 50 Вт.
Аппарат на универсальном таймере NE555
Ещё во второй половине прошлого столетия научились создавать многофункциональные приборы в виде одной большой гибридной интегральной микросхемы. Среди этих изделий большой популярностью пользуется микросхема таймер NE555, с помощью которой можно собрать схемы самого различного уровня сложности, от простого триггера Шмидта до многоступенчатого кодового замка. В России 555 таймер широко применяется при построении схем генераторов и реле времени, у которых настройки задержки изменяются от микросекунд до нескольких часов.
Таймер 555 серии может работать в режиме одновибратора, мультивибратора и прецизионного триггера Шмитта с RS-триггером.
ФОТО: ledjournal.infoСхема таймера 555
Если таймер NE555 включить по схеме реле времени, то можно реализовать два варианта – задержку на включение и задержку на выключение нагрузки.
Устройство с функцией задержки включения
ФОТО: ledjournal.infoСхема реле времени на микросхеме NE555
Для выполнения двух противоположных функций можно использовать группу перекидного контакта выходного реле. К выходным клеммам реле подключить точки «Включить» и «Выключить» зависимого устройства. В одном положении перекидного контакта будет активироваться функция «Включить» зависимого прибора.
Устройство с задержкой отключения
В другом положении перекидного контакта будет активирована функция «Выключить» того же самого зависимого прибора. Настройка времени задержки выполняется по необходимости.
Если нужно одновременно иметь две разные настройки, появляется необходимость в наличии двух реле времени и устройства, которое будет решать, какое реле времени и когда включать.
Прибор с большой выдержкой на стабилизаторе напряжения TL431
Существует универсальная микросхема, основным назначением которой является стабилизация напряжения, но на ней имеется возможность реализовать даже схему таймера задержки времени с большой выдержкой. Для реализации понадобится пара резисторов и конденсатор. Их номиналы рассчитываются по формуле, чтобы получить требуемое время задержки.
ФОТО: ledjournal.infoСхема устройства задержки времени на стабилизаторе напряжения TL431
Эту схему можно реализовать благодаря очень низкому показателю входного тока (4 мкА). Когда замыкается главный контакт, транзистор начинает производить зарядку. Когда показатель напряжения достигает значения в 2,5 В, транзистор открывается и ток при содействии оптопарового светодиода (оптрона) начинает течь, от чего на внешней цепи происходит замыкание.
Таймер для каждодневного включения нагрузки на базе CD4060B
Для обязательного ежедневного выполнения рутинных домашних работ (например, для поливки цветов или кормления рыбок в аквариуме) можно приспособить электронную технику. Схема реализуется из двух генераторов импульсов периодом в 24 часа, триггера и выходного ключа с реле. Она приведена на рис 7. В качестве блока питания использована зарядка для сотового телефона с выходом 5 V. В каком-то смысле это одна из функций умного дома.
ФОТО: radiostorage.netПринципиальная схема ежедневного домашнего помощника
Принцип работы
Электрический ток при помощи проводников создает магнитное поле под прямым углом к направлению потока электронов. Если проводник свернут в форме катушки, магнитное поле, создаваемое реле, будет ориентировано вдоль длины катушки. Чем больше ток, тем больше сила магнитного поля, как это показывает электрическая схема работы:
Фото – Схема
Индукторы реагируют на изменения в текущем состоянии реле из-за энергии, запасенной в производном магнитном поле. Когда мы строим трансформатор с двумя катушками индуктивности вокруг общего железного сердечника, магнитное поле используется для передачи энергии от одной катушки к другой. Тем не менее, есть более простые и более прямые способа применения электромагнитных полей, чем в разнообразных устройствах. Магнитное поле, создаваемое катушкой тока, может использоваться для приложения механической силы на любое магнитное тело.
Фото – Схема катушки
Если поместить магнитный датчик около такой катушки с целью движения предмета, то когда активизируется катушка с электрическим током, у нас получится электромагнит. Подвижная магнитная стрелка называется арматурой, большинство стрелок перемещаются при помощи постоянного (DC) или переменного (AC) тока, подающегося на катушку напряжения. Полярность магнитного поля не имеет значения для привлечения железного ядра. Соленоиды могут быть использованы для электрически открытых дверных защелок, контроля работы клапанов, движения роботов и их конечностей, приводов механизмов электрических выключателей. Но, если соленоид используется для приведения в действие набора переключающих контактов, его называют реле срабатывания
.
Реле чрезвычайно полезны, если есть необходимость контроля большого количества тока и/или напряжения с небольшим электрическим сигналом. Катушка реле, которая создает магнитное поле, может пропустить через себя доли ватт энергии, в то время как контакты (закрытые или открытые к току магнитного поля) могут провести сотни ватт энергии нагрузки. По сути, реле действует как бинарный усилитель включения и выключения.
В приведенной схеме, в катушки реле подается питание от источника низкого напряжения (12 В постоянного тока), в то время как однополюсный контакт на одно направление (SPST) получает ток цепи высокого напряжения (480 В ~). Вполне вероятно, что ток, необходимый для питания обмотки реле будет в сотни раз меньше, чем текущий уровень. Типичные токи катушки реле значительно ниже 1 А, в то время как контактные данные промышленных реле имеют характеристики около 10 ампер.
Одна катушка реле может быть использована для приведения в действие более чем одного набора контактов. Эти контакты могут быть замыкающими, размыкающими или любой комбинацией из двух и более. Контакты реле могут быть представлены колодками из металлического сплава, ртути или даже магнитного тростника, так же, как и другие типы выключателей.
Реле времени под питание на выходе 220 В своими руками
Все вышеописанные схемы рассчитаны на 12-вольтовое выходное напряжение. Чтобы подключить к собранному на их основе реле времени мощную нагрузку, необходимо на выходе устанавливать магнитный пускатель. Для управления электродвигателями или другой сложной электротехникой с повышенной мощностью так и придется делать.
Однако для регулировки бытового освещения можно собрать реле на базе диодного моста и тиристора. При этом подключать через такой таймер что-либо иное не рекомендуется. Тиристор пропускает сквозь себя только положительную часть синусоиды переменных 220 Вольт. Для лампочки накаливания, вентилятора или ТЭНа это не страшно, а другое электрооборудование может не выдержать и сгореть.
Схема реле времени с тиристором на выходе и диодным мостом на входе рассчитана на работу в сетях 220 В, но имеет ряд ограничений по типу подключаемой нагрузки.
Для сборки подобного таймера для лампочки необходимы:
- сопротивления постоянные на 4,3 МОм (R1) и 200 Ом (R2) плюс регулируемое на 1,5 кОм(R3);
- 4 диода с максимальным током выше 1А и обратным напряжением от 400 В;
- конденсатор на 0,47 мкФ;
- тиристор ВТ151 или аналогичный;
- выключатель.
Функционирует это реле-таймер по общей схеме для подобных устройств, с постепенной зарядкой конденсатора. При смыкании на S1 контактов С1 начинает заряжаться. В течение этого процесса тиристор VS1 остается открытым. В итоге на нагрузку L1 поступает сетевое напряжение 220 В. После завершения зарядки С1 тиристор закрывается и отсекает ток, выключая лампу.
Регулировка задержки производится выставлением значения на R3 и подбором емкости конденсатора. При этом надо помнить, что любое прикосновение к оголенным ножкам всех использованных элементов грозит поражением током. Они все находятся под напряжением 220 В.
Примеры схем подключения
В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.
Рис. 7: пример схемы подключения
Посмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).
Рис. 8: Еще одна схема подключения реле времени
На рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме. Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.
Рис. 9: схема включения реле через контактор
Как видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор. В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.
Реле времени c анкерным или часовым механизмом
Главным элементом этой конструкции является пружина, которая «взводиться» с помощью электромагнита. Контакты реле замыкаются после того, как часовой механизм отсчитает положенное время, которое можно выставить на специальной шкале.
Реле времени c применением двигателей
Позволяет производить задержку времени от 10 секунд до нескольких часов. Имеет в составе синхронный электродвигатель, редуктор и электромагнит, с помощью которого осуществляется сцепление первых двух элементов.
Особенности устройства твердотельного реле
Независимо от того, какой производитель твердотельного реле, элементная база у него постоянна – в редких случаях можно найти незначительные различия. На входе обычно устанавливается резистор, соединяется он последовательно с оптическим устройством. Иногда сопротивление изготавливается по сложной конструкции, в которую включается защита от обратной полярности и регулятор тока. Нужно выделить такие свойства твердотельных реле:
- При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства.
- При помощи переключающей цепи удается осуществить подачу на нагрузку питающего напряжения.
- С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.
Таймер циклического включения-выключения. Циклическое реле времени своими руками
схема на 12 и 220 вольт
В современном оборудовании часто необходим таймер, т. е. устройство, которое сработает не сразу, а через промежуток времени, поэтому его еще называют реле задержки. Прибор создает временные задержки включения или выключения других устройств. Его не обязательно приобретать в магазине, ведь грамотно сконструированное самодельное реле времени будет эффективно выполнять свои функции.
Сфера применения реле времени
Области использования таймера:
- регуляторы;
- датчики;
- автоматика;
- различные механизмы.
Все данные устройства делятся на 2 класса:
- Циклические.
- Промежуточные.
Первое считается самостоятельным прибором. Он подает сигнал через заданный временной промежуток. В автоматических системах циклическое устройство включает и отключает необходимые механизмы. С его помощью управляют освещением:
- на улице;
- в аквариуме;
- в теплице.
Циклический таймер является неотъемлемым устройством в системе «Умный дом». Его применяют для выполнения следующих задач:
- Включение и выключение отопления.
- Напоминание о событиях.
- В строго указанное время включает необходимые устройства: стиральную машинку, чайник, свет и др.
Кроме вышеуказанных, есть еще отрасли, в которых эксплуатируется циклическое реле задержки:
- наука;
- медицина;
- робототехника.
Промежуточное реле используется для дискретных схем и служит вспомогательным устройством. Оно осуществляет автоматическое прерывание электрической цепи. Сфера применения промежуточного таймера реле времени начинается там, где необходимы усиление сигнала и гальваническая развязка электрической цепи. Промежуточные таймеры разделяются на виды в зависимости от конструктивного исполнения:
- Пневматические. Срабатывание реле после поступление сигнала не происходит мгновенно, максимальная время срабатывания — до одной минуты. Используется в цепях управления металлорежущих станков. Таймер управляет приводами для ступенчатой регулировки.
- Моторные. Диапазон установки временной задержки начинается с пары секунд и заканчивается десятками часов. Реле задержки являются частью цепей защиты воздушных линий электропередач.
- Электромагнитные. Предназначены для цепей постоянного тока. С их помощью происходят разгон и торможение электропривода.
- С часовым механизмом. Основной элемент — взведенная пружина. Время регулирования — от 0,1 до 20 секунд. Используются в релейной защите воздушных линий электропередач.
- Электронные. Принцип действия построен на физических процессах (периодические импульсы, заряд, разряд емкости).
Схемы различных реле времени
Существуют разные варианты исполнения реле времени, схема каждого вида имеет свои особенности. Таймеры можно изготовить самостоятельно. Перед тем как сделать реле времени своими руками, необходимо изучить его устройство. Схемы простых реле времени:
- на транзисторах;
- на микросхемах;
- для выходного питания 220 В.
Опишем каждую из них более подробно.
Схема на транзисторах
Необходимые радиодетали:
- Транзистор КТ 3102 (или КТ 315) — 2 шт.
- Конденсатор.
- Резистор номиналом 100 кОм (R1). Также понадобится еще 2 резистора (R2 и R3), сопротивление которых будет подбираться вместе с емкостью в зависимости от времени срабатывания таймера.
- Кнопка.
При подключении схемы к источнику питания начнет заряжаться конденсатор через резисторы R2 и R3 и эммитер транзистора. Последний откроется, поэтому на сопротивлении будет падать напряжение. В результате откроется второй транзистор, что приведет к срабатыванию электромагнитного реле.
При заряде емкости ток будет уменьшаться. Это вызовет снижение эммитерного тока и падения напряжения на сопротивлении до того уровня, которое приведет к закрытию транзисторов и отпускания реле. Чтобы запустить таймер заново, потребуется кратковременное нажатие кнопки, которое вызовет полную разрядку емкости.
Для увеличения временной задержки используют схему на полевом транзисторе с изолированным затвором.
На базе микросхем
Применение микросхем уберет необходимость разряжать конденсатор и подбирать номиналы радиодеталей для выставления необходимого времени срабатывания.
Необходимые электронные компоненты для реле времени на 12 вольт:
- резисторы номиналом 100 Ом, 100 кОм, 510 кОм;
- диод 1N4148;
- емкость на 4700 мкФ и 16 В;
- кнопка;
- микросхема TL 431.
Положительный полюс источника питания должен соединяться с кнопкой, параллельно к которой подключен один контакт реле. Последний также подключается к резистору 100 Ом. С другой стороны рези
Механические
Самые простые – механические. В них по периметру циферблата имеются пластмассовые сектора. При нажатии на них можно задавать нужное время работы аппарата.
Каждый сегмент сектора разделен на 15 или 30 минут (зависит от марки розетки). Благодаря этому в сутки можно задать максимально 96 программ.
Настройка работы механической розетки
выставьте на розетке по флажку текущее время
нажмите на пластмассовые сектора того периода, когда прибор должен включиться и работать
включите розетку и подключите через нее вилку настраиваемого оборудования
аппарат готов к работе
Есть механические розетки с таймером и другого образца наподобие тех, что стоят в стиральных машинах. Поворотом рычага вы заводите таймер на определенное время отключения.
Механического типа розетки могут работать и постоянно без таймера, для этого у них сбоку имеется кнопка блокировки.
Максимальная мощность, которую можно подключить через такие девайсы достигает 3,5квт. Некоторые недобросовестные производители завышают эти данные. Поэтому не рекомендую сразу подключать максимально возможную нагрузку. Особенно учитывая тот факт, что работать они будут без вашего присутствия и надзора, а контакты внутри не настолько уж толстые.
Надо заметить, что механические розетки бывают только суточного исполнения. Это означает, что одна и та же программа будет работать одинаково в течении дня. На следующий день цикл повторится.
Задержка отключения и включения реле с помощью конденсатора и резистора 12В
Не обязательно прибегать к использованию интегральных таймеров по типу NE555 если требуется всего лишь задержка перед старт/стоп. Использование конденсатора в паре с резистором и транзистором решит задачу без сложных ИС. Воспользуйтесь схемой ниже
Это классическая схема с использованием конденсатора, резистора, диода и биполярного транзистора. В схеме используется транзистор n-p-n типа. Работает она так: после подачи напряжение на резистор N сопротивления, начинает заряжаться конденсатор N емкости. При достижении напряжение смещения диоды открываются, а затем открывается управляющий эмиттерный p-n переход транзистора, который «открывает» транзистор и ток начинает течь в направлении коллектор-эмиттер.
Работает наш полупроводник в активном режиме. Пока управляющая базой величина тока не выйдет из этого режима, коэффициент усиления не приобретет нисходящую форму. Так продолжается пока величина тока вовсе не переступит порога отсечения — переход коллектор-эмиттер закроется. При включении происходит все да наоборот.
Для сборки рекомендуется использовать транзистор КТ827 с n-p-n переходом. Диод подойдет КД105Б или аналогичный по параметрам. Конденсатор и резистор подбирается в каждом случае индивидуально, об этом ниже.
Две кнопки и две нагрузки
Электронный переключатель с двумя кнопками работает логичнее однокнопочного, во всяком случае понятно, что одна кнопка включается одну нагрузку, а другая — другую нагрузку. На рисунке 4 показана схема двухкнопочного электронного переключателя двух нагрузок.
Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.
Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе — единица, на инверсном — ноль.
При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.
А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.
Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.
При этом, на инверсном выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VT2 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 2 не поступает.
Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.
На нагрузку 2 поступает питание. При этом, на прямом выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, — питание на нагрузку 1 не поступает.
Основные характеристики
Каждое ТР имеет индивидуальные технические характеристики (ТХ). Реле нужно выбирать согласно характеристикам по нагрузке и условиям применения при работе электродвигателя или другого потребителя электроэнергии:
- Значение Iн.
- Диапазон регулировки I срабатывания.
- Напряжение.
- Дополнительное управление работой ТР.
- Мощность.
- Граница срабатывания.
- Чувствительность к фазному перекосу.
- Класс отключения.
Номинальное значение тока – значение I, на которое рассчитано ТР. Выбирается по значению Iн потребителя, к которому непосредственно подключается. Кроме того, нужно выбирать с запасом по Iн и руководствоваться следующей формулой: Iнр = 1.5 * Iнд, где Iнр – Iн ТР, который должен быть больше номинального тока двигателя (Iнд) в 1.5 раза.
Граница регулировки I срабатывания является одним из важных параметров устройства термозащиты. Обозначение этого параметра является диапазоном регулировки значения Iн. Напряжение – значение силового напряжения, на которое рассчитаны контакты реле; при превышении допустимой величины произойдет выход из строя устройства.
Некоторые виды реле снабжены отдельными контактами для управления работой устройства и потребителя. Мощность – это один из основных параметров ТР, которое определяет выходную мощность подключенного потребителя или группы потребителей.
Граница срабатывания или порог срабатывания является коэффициентом, зависящим от номинального тока. В основном его значение находится в диапазоне от 1,1 до 1,5.
Чувствительность к фазному перекосу (асимметрии фаз) показывает процентное соотношение фазы с перекосом к фазе, по которой протекает номинальный ток необходимой величины.
Класс отключения – параметр, представляющий среднее время срабатывания ТР в зависимости от кратности тока уставки.
Основной характеристикой, по которой нужно выбирать ТР, является зависимость времени срабатывания от тока нагрузки.
Микросхема 555
Всем привет. Сегодня я хочу рассказать вам о микросхеме 555. Её история началась ещё в далеком 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine). В те времена это была единственная «таймерная» микросхема, которая была доступна массовому потребителю. Сразу после выхода 555 завоевала бешеную популярность и её начали выпускать почти все производители полупроводников. Отечественные производители тоже выпускали данную микросхему под названием КР1006ВИ1.
Что это за чудо?
Микросхема выпускается в двух вариантах корпуса — пластиковом DIP и круглом металлическом. Правда встретить 555 в круглом металлическом корпусе в наши времена очень сложно, чего не скажешь о версии в пластиковом DIP корпусе. Внутри корпуса с восемью выводами скрываются транзисторы, диоды и резисторы. Не будем вдаваться в доскональное изучение 555, но про ножки этой микросхемы я расскажу более подробно. Всего ножек 8.
1. Земля
. Вывод, который во всех схемах нужно подключать к минусу питания. 2.Триггер , он же запуск. Если напряжение на пуске падает ниже 1/3 Vпит, то таймер запускается. Ток, потребляемый входом, не превышает 500нА. 3.Выход . Напряжение выхода примерно на 1,7 В ниже напряжения питания, когда он включен. Максимальная нагрузка, которую может выдержать выход — 200 мА. 4.Сброс . Если подать на него низкий уровень напряжения (меньше 0,7 В), то схема переходит в исходное состояние не зависимо от того, в каком режиме находится таймер на данный момент. Если в схеме не нужен сброс, то рекомендуется подключить этот вывод к плюсу питания. 5.Контроль . Этот вывод позволит нам получить доступ к опорному напряжению компаратора №1. Используется этот вывод очень редко, а вися в воздухе может сбивать работу, поэтому в схеме его лучше всего присоединить к земле. 6.Порог , он же стоп. Если напряжение на этом выходе выше 2/3 Vcc, то таймер останавливается и выход переводится в состояние покоя. Стоит заметить, что работает выход только тогда, когда вход выключен. 7.Разряд . Этот выход соединяется с землей внутри самой микросхемы, когда на выходе микросхемы низкий уровень и закрыт, когда на выходе высокий уровень. Может пропускать до 200 мА и иногда используется как дополнительный выход. 8.Питание . Данный выход нужно подключать к плюсу питания. Микросхема поддерживает напряжение в пределах 4,5-16 В. Может работать от обычной 9В-батарейки или от проводка USB.
Моностабильный
При подаче сигнала на вход нашей микросхемы, она включается, генерирует выходной импульс заданной длины и выключается, ожидая входного импульса
Важно, что после включения микросхема не будет реагировать на новые сигналы. Длину импульса можно рассчитать по формуле t=1.1*R*C
Пределов по длительности импульсов нет — как по минимальной, так и по максимальной длительности
Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества
Пределов по длительности импульсов нет — как по минимальной, так и по максимальной длительности. Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества.
Нестабильный мультивибратор
В этом режиме все довольно таки просто. Управлять таймером не нужно. Он все сделает сам — сперва включится, подождет время t1, потом выключится, подождет время t2 и начнет все заново. На выходе у нас получится забор из высоких и низких состояний. Частота с которой будет колебаться зависит от параметров величин R1,R2 и C и определяется она по формуле F= 1,44/((R1+R2)C). В течение времени t1 = 0.693(R1+R2)C на выходе будет высокий уровень, а в течение времени 2 = 0.693R2C — низкий.
Бистабильный
В данном режиме наша микросхема 555 используется как выключатель. Нажал одну кнопку — выход включился, нажал другую — выключился.
Расположение и назначение выводов
- Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
- Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
- Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
- Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
- Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
- Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
- Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
- Питание (VCC). Подключается к плюсу источника питания 4,5–16В.