Расчет и методика измерения петли фаза ноль

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N. Испытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ. Испытание петли С-РЕ
  3. Измерения в цепях ТТ.

Подключение прибора в цепях с защитным заземлением

  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

Испытание надежности заземления корпусов электрооборудования

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

Устройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Сроки проведения испытаний

Электрические сети и оборудование эксплуатируются в различных режимах. Со временем наблюдается естественное старение изоляции кабеля, ухудшение свойств проводников из-за токовых перегрузок, отклонений напряжения, влияния окружающей среды и т. д. Этим обусловлена необходимость в периодической проверке целостности контура фаза ноль.

В соответствии с указаниями ПУЭ испытание петли «Ф-Н» проводится, как минимум, один раз в 36 месяцев, а для электрических сетей, эксплуатируемых в опасных или агрессивных средах, как минимум, один раз в 24 месяца. Также предусматриваются внеплановые проверки, в следующих ситуациях:

  • при внедрении в работу нового оборудования;
  • после осуществления модернизации, профилактики или ремонта действующей сети;
  • по требованию поставщика электроэнергии;
  • по факту запроса от потребителя.


Периодичность осмотров электрооборудования жилых домов

Методика измерения петли «фаза — ноль»

Применяются следующие методы измерения: падения напряжения в отключенной цепи, то же – на нагрузочном сопротивлении и метод КЗ. Второй способ реализован в принципе действия прибора производства Sonel типа MZC-300. Методика выполнения измерений таким методом изложена в ГОСТе 50571.16-99. Достоинство этого метода – в простоте и безопасности.

Прежде, чем приступить к основным измерениям, следует испытать сопротивление и непрерывность защитных проводников. Во время проведения измерений прибором MZC-300 следует учитывать, что возможна автоматическая блокировка процесса в следующих случаях:

  1. Напряжение в сети превышает 250 В: прибор в это время издает звуковой продолжительный сигнал, а на дисплее появляется надпись «OFL». В таком случае измерения необходимо прекратить.
  2. При разрыве цепи PE/N на дисплее появится символ в виде двойного тире и будет звучать сигнал после нажатия на кнопку «start». Необходимо быть осторожным: защита от токов КЗ в сети отсутствует.
  3. При снижении напряжения в испытуемой цепи менее 180 В на дисплее загорается символ «U», что сопровождается двумя продолжительными звуковыми сигналами после нажатия на кнопку «start».
  4. В случае перегрева прибора из-за значительных нагрузок появляется на дисплее символ «Т» и звучат два сигнала. В этом случае нужно уменьшить количество операций за единицу времени.

Для проведения измерений соответствующие клеммы прибора подключают к одной из фаз и глухозаземленной нейтрали (в сети с защитным заземлением вместо нейтрали подключают прибор к заземляющему проводнику). При проверке состояния защиты электроустановки от замыкания на корпус прибор MZC-300 подключают к заземляющей клемме корпуса и фазному проводу. Необходимо следить за тем, чтобы контакт был надежным: применять следует проверенные наконечники (если необходимо – заостренные зонды), а место соединения должно быть очищено от окиси.

Во время измерения прибором серии MZC-300 происходит имитация короткого замыкания: ток протекает через резистор с известным сопротивлением (10 Ом) в течении 30 мс. Уменьшенное значение силы тока является одним из параметров, участвующих в образовании результата. Непосредственно перед определением значения такого тока прибор измеряет реальное напряжение в сети. Производится поправка по векторам тока и напряжения, после чего процессор высчитывает полное сопротивление петли КЗ, раскладывая его на реактивную и активную составляющие и угол сдвига фаз, образующийся в измеряемой цепи во время протекания тока КЗ. Диапазон измерения полного сопротивления выбирается прибором автоматически.

Считывание и оформление результата

После измерения результат может быть отображен на дисплее в виде значения полного сопротивления петли КЗ или тока КЗ. Для просмотра и смены режима отображения следует нажать клавишу Z/I. Полное сопротивление отражает дисплей, а значение тока КЗ необходимо вычислять.

После подключения прибора к испытуемой цепи определяется напряжение, после чего нажатием на кнопку «start» включается измерительный режим. Если не действуют факторы, которые могут стать причиной блокировки процесса, на дисплее появляется ожидаемое значение тока КЗ или полного сопротивления. Если необходимо знать значения других параметров (реактивного и активного сопротивления, угол сдвига фаз), следует воспользоваться кнопкой SEL. Предельное значение реактивного, активного и полного сопротивления – 199,9 Ом. При превышении этого предела дисплей отразит символ OFL, если же прибор будет находиться в режиме измерения тока КЗ, отобразится символ UFL, означающий малую величину. При необходимости увеличить диапазон нужно использовать другую модификацию прибора — MZC-ЗОЗЕ: специальная функция RCD позволяет получить результаты до 1999 Ом.

Периодичность проведения измерений сопротивления петли «фаза – ноль» определяется документом ПТЭЭП и системой ППР, которая предусматривает своевременное проведение капитальных и текущих ремонтов электрооборудования. В случае выхода из строя устройств защиты после их ремонта или замены проводятся внеплановые работы по установлению значений параметров цепи «фаза – ноль».

Заключение о результатах измерений выполняется следующим образом. После выполнения всех работ по изложенной выше методике, получаем величину однофазного тока КЗ. Сравниваем результат с током, при котором срабатывает расцепитель выключателя-автомата или с номиналом плавко вставки. Делаем выводы о пригодности оборудования защиты. Все полученные результаты заносятся в протокол установленной формы.

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».

Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Зачем измерять полное сопротивление петли короткого замыкания?

Повышенное сопротивление сети и работа на предельно допустимых токах существенно повышает износ установленного оборудования и в несколько раз увеличивает вероятность аварии или его досрочного выхода из строя. Короткое замыкание в электрической цепи вследствие механического повреждения изоляции кабеля или в результате необратимых процессов при естественном старении приводит к мгновенному повышению величины тока и быстрому нагреву проводников. При этом начинает плавиться и гореть изоляция. Нескольких секунд до момента срабатывания защиты может хватить для повреждения и возгорания кабеля, а затем и воспламенения соседних кабелей. Такая ситуация грозит пожаром даже при последующем обесточивании поврежденной цепи.
Разумеется, чем быстрее сработает выключатель автоматической защиты, тем меньшие повреждения будут нанесены электрическому оборудованию и тем меньшему риску подвергнется жизнь и здоровье людей.

В электроустановках с заземленной нейтралью нулевой проводник соединен с нейтралью понижающего трансформатора, которая объединена с контуром заземления. При аварийном замыкании фазы на фазу, на корпус или нейтральный провод возникает новая электрическая цепь – так называемая петля короткого замыкания. Существует несколько методов измерения сопротивления петли короткого замыкания:

  • метод падения напряжения в отключенной цепи;
  • метод падения напряжения на нагрузочном сопротивлении;
  • метод короткого замыкания цепи.

Для измерения полного сопротивления (импеданса) петли короткого замыкания компания Sonel применяет технический метод создания «искусственного короткого замыкания». Прибор серии MZC измеряет напряжение сначала без нагрузки, а затем при кратковременной нагрузке резистором 10 Ом (номинал варьируется между моделями) в течение 30 мс. Полное сопротивление петли короткого замыкания содержит активную и реактивную составляющие сопротивления и рассчитывается на основе разницы падений напряжения по формуле:

SLC


Рисунок 1. Активная и реактивная составляющие полного сопротивления

Полное сопротивление петли короткого замыкания должно быть как можно меньше, тогда ток короткого замыкания в цепи будет наибольшим и защита сработает быстрее. При межфазном замыкании ток в контуре будет больше, чем при однофазном замыкании. По полученному значению импеданса рассчитывают значение тока короткого замыкания.
Условия исправной защиты описаны формулой:

SAN

Из вышеприведенных формул и диаграммы становится понятно, почему необходимо измерять именно импеданс, т.е. ПОЛНОЕ сопротивление петли короткого замыкания. Определение только резистивной составляющей, т.е. активного сопротивления цепи, занижает фактическое значение, вследствие чего расчет тока срабатывания приведет к ошибочному результату и ложному выводу о соответствии параметров защиты! В действительности, в случае значительного индуктивного сопротивления петли короткого замыкания (например, обмотка питающего трансформатора, длинная кабельная линия) ток срабатывания, рассчитанный на основании только значения активного сопротивления, может оказаться недостаточным для обеспечения требуемого времени срабатывания защиты, что неминуемо подвергнет риску жизнь людей в аварийной ситуации.
Проведение измерений сопротивления петли фаза-нуль в электроустановках до 1000 В регламентировано пунктом 28.4 таблицы 28 Правил технической эксплуатации электроустановок потребителя (ПТЭЭП) при проверке срабатывания защиты в сетях с заземленной нейтралью (TN-C, TN-C-S, TN-S) и проводится раз в два года (п. 2.7.16), а также после каждой перестановки и монтажа нового электрооборудования перед его включением (п. 2.7.17).
Проверка осуществляется путем непосредственного измерения тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания.
Величина тока однофазного короткого замыкания при замыкании на корпус или нулевой рабочий проводник должна составлять не менее:
3-х кратного значения номинального тока плавкой вставки предохранителя,
3-х кратного значения номинального тока нерегулируемого расцепителя или 3-х кратной уставки тока срабатывания регулируемого расцепителя автоматического выключателя с
обратнозависимой от тока характеристикой.
Другие параметры срабатывания защитного автоматического отключения должны соответствовать Правилам устройства электроустановок (ПУЭ изд.7) п. 7.3.139 и 1.7.79.

Эффект от падения напряжения на контролируемом участке силовой цепи

Что такое напряжение и как оно влияет на электрическую схему? Напряжение является важным параметром электрической схемы, оно показывает разницу потенциалов между двумя точками. При данном потенциале электрический ток начинает протекать и совершать работу. Однако, при падении напряжения на участке силовой цепи, возникает ряд проблем, таких как, например, перегрев оборудования, термические потери энергии, ухудшение качества работы устройств и т.д.

Как измеряется напряжение на контролируемом участке силовой цепи? Для измерения напряжения на данном участке необходимо использовать специализированные приборы, как например, мультиметр. Этот прибор позволяет с высокой точностью измерять напряжение и проверять, соответствует ли оно установленному максимальному значению.

Что можно сделать для уменьшения эффекта падения напряжения? Для уменьшения нагрузки на контролируемом участке силовой цепи можно использовать ряд мероприятий, например, увеличение толщины провода, установка компенсирующего резистора, использование проводников с меньшим сопротивлением и т.д.

Каковы последствия падения напряжения на контролируемом участке силовой цепи? Одним из основных рисков при падении напряжения является перегрев оборудования, который может привести к его повреждению и выходу из строя, а также к снижению эффективности работы всей электрической схемы. Кроме того, ухудшается точность измерений и может возникнуть риск поражения электрическим током.

Существующие методики расчетов

Измерение фазы-ноль может выполняться с помощью различных методик. В промышленности и с электрооборудованием, где требуется максимально возможная точность расчетов, используются специальные приборы, которые имеют минимальную погрешность. Также в таком случае используются соответствующие формулы, которые учитывают различные факторы, влияющие на качество полученных данных. В бытовых условиях будет достаточно использование простейших измерителей, что поможет получить необходимую информацию.

Наибольшее распространение получили следующие методики измерения петли фаза-ноль:

  • Метод падения напряжения.
  • Метод короткого замыкания в цепи.
  • Использование амперметра-вольтметра.

При использовании метода снижения напряжения все замеры проводят при отключении нагрузки, после чего в цепь включают нагрузочное сопротивление с заранее рассчитанной величиной. С помощью специального устройства измеряется величина нагрузки в цепи, после чего полученные результаты сверяются с эталоном, проводятся соответствующие расчеты, которые сравниваются с нормативными данными.

Метод коротких замыканий в цепи подразумевает подключение к сети специального прибора, создающего искусственные короткие замыкания в необходимой потребителю точке. С использованием специальных устройств определяют величину тока короткого замыкания, а также время срабатывания защиты. Полученные данные сверяются с нормативными показателями, после чего рассчитывается соответствие электроцепи действующим нормативам и требованиям.

При использовании метода амперметра-вольтметра снимают с цепи питающее напряжение, после чего подключают к сети понижающий трансформатор, замыкают фазный провод действующей электроустановки. Полученные данные обрабатывают, и, используя специальные формулы, определяют необходимые параметры.

Наибольшее распространение на сегодняшний день получила методика измерения петли фаза-нуль методом подключения нагрузочного сопротивления. Такой способ сочетает простоту использования, максимальную точность, поэтому он применяется как в быту, так и при необходимости получения сверхточных данных. При необходимости контроля показателя фазы в одном здании сопротивление нагрузки подключают в самом дальнем доступном участке цепи. Подключение приборов осуществляется к предварительно защищенным контактам, что позволит избежать падения напряжения и ослабления силы тока.

Первоначальные измерения выполняют без подключения нагрузки, после чего с помощью амперметра производится контроль с точной нагрузкой. По результатам полученных данных рассчитывают сопротивление петли фаза-ноль.

При измерении этого показателя рассчитанных данных хватает для определения качества электросети в быту. В промышленности при выполнении соответствующего контроля составляется протокол, куда заносят все полученные величины. В таком протоколе выполняют соответствующие расчеты, после чего бумага подписывается инженерами и прикладывается к общей нормативно-технической документации.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

Ток КЗ (I

КЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IABРасположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Методика определения сопротивления петли фаза-нуль

Используемая аппаратура

Для измерения цепочки фаза-нуль применяются электронные приборы, отличающиеся как своими возможностями (способом снятия показаний и их погрешностью, в частности), так и назначением. К самым распространенным образцам измерителей относятся:

  • Приборы М417 и MSC300, позволяющие определять искомую величину, по окончании измерений токи КЗ на землю вычисляются на основе полученных результатов.
  • Устройство ЭКО-200, посредством которого удается замерить только ток замыкания.
  • Прибор ЭКЗ-01, применяемый для тех же целей, что ЭКО-200.
  • Измеритель ИФН-200.

Прибор М417 позволяет проводить измерения в цепях 380 Вольт с глухозаземленной нейтралью без необходимости снятия питающего напряжения. При проведении замеров используется метод его падения в режиме размыкания контролируемой цепи на промежуток времени, составляющий 0,3 секунды. К недостаткам этого устройства относят необходимость калибровки системы перед началом работы.

Прибор MSC300 относится к изделиям нового типа с электронной начинкой, построенной на современных микропроцессорах. При работе с ним используется метод падения потенциала при подключении фиксированного сопротивления величиной 10 Ом. Рабочее напряжение – 180-250 Вольт, а время замера контролируемого параметра – 0,03 сек. Устройство подсоединяется к проверяемой линии в самой дальней ее точке, после чего нажимается кнопка «Старт». Итоги измерений выводятся на встроенный в прибор цифровой дисплей.

Существующие методики измерений

Zпет = Zп + Zт/3, где

  • Zп – полное сопротивление проводов на участке КЗ;
  • Zт – то же, но для силового трансформатора подстанции (источника тока).

Для дюралевых и медных проводов Zпет в среднем составляет 0,6 Ом/км. По найденному сопротивлению находится ток однофазового замыкания на землю: Iк = Uф/Zпет.

Если в результате приведенных выкладок выяснится, что значение искомого параметра не превышает трети от допустимой величины (смотрите ПУЭ), можно ограничиться этим вариантом расчета. В противном случае проводятся прямые измерения тока посредством приборов ЭКО-200 или ЭКЗ-01. В их отсутствие может применяться метод амперметра-вольтметра.


Общий порядок проведения испытаний с помощью измерительных приборов указанных марок:

  • Контролируемое оборудование отключают от сети.
  • Организуется питание проверяемой петли от понижающего трансформатора.
  • Нужно умышленно замкнуть фазу на корпус электрического приемника, а затем измерить значение Zпет, получившееся в результате КЗ.

Расчеты и оформление результатов


Сопротивление проверяемой петли вычисляется по формуле: Zпет=U/I. Полученное по результатам расчета значение складывается с импедансом одной из 3-х обмоток станционного трансформатора, равным Rтр./3.

По завершении линейных измерений согласно действующим нормативам их следует зафиксировать документально. Для этого по установленной форме подготавливаются протоколы испытаний, в которых обязательно регистрируются следующие данные:

  • Тип линии, ее основные характеристики.
  • Используемое при проверке измерительное оборудование.
  • Величины собственного переходного сопротивления и обмоток станционного трансформатора.
  • Их сумма, являющаяся итогом проведенных измерений.

Что это такое, и как формируется проверочная схема

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме

Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль)

Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

Зачем нужно измерение сопротивления петли фаза-нуль

Измерение этих показателей необходимы в двух целях.

А именно:

  • Определить качество используемых электрических сетей;
  • Для оценки надежности защитных устройств и приборов.

Если замеры сопротивления проводились для определения качества, то в этом случае вам придется сравнить полученный итог с сопротивлением петли, которое было написано в проекте. Если в этом случае замеры показали большее сопротивление, чем оно должно быть, то были выполнены неправильно монтажные работы или были допущены другие дефекты магистрали. В том случае если проект отсутствует или был утерян, то в этом случае для сравнения вам придется обратиться в проектную службу. Для того чтоб иметь представление о проекте , вам необходимо получить определенные навыки.

В таких измерениях основной задачей является определить мощность короткого замыкания, так как от такой проблемы и устанавливаются защитные устройства.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий