Что называется падением напряжения на участке цепи

Зачем необходимо производить расчеты?

  • Во-первых, для определения требуемых параметров приобретаемого кабеля – сечение, материал жил.
  • Во-вторых, чтобы правильно выбрать резервный источник эл/питания. Главным образом, по мощности.
  • В-третьих, для обеспечения нормального функционирования бытовой техники, предотвращения ее поломки. Особенно импортной, так как практически все модели «made in» очень капризны в плане качества эл/питания.

Когда нужно делать расчеты?

Как правило, ответ на этот вопрос звучит так – при большой удаленности объекта от электрогенератора. Это не стоит понимать буквально. Дело не в расстоянии между двумя точками по прямой, а в протяженности трассы! Ведь кабель в некоторых случаях прокладывается так, что она изобилует различными изгибами, поворотами и так далее.

В расчет принимаются его заложенные погонные метры, так как единица длины характеризуется определенным электрическим сопротивлением

Именно это и важно, ведь данный параметр напрямую влияет на падение напряжения.. Тут уместно вспомнить закон Ома, и сразу все становится понятно. Дело в том, что для нормальной работы любой установки (прибора, механизма), к которой подводится напряжение, его падение на линии не должно быть более 2 % (для кабелей сечением до 16 «квадратов»)

На участке между ВРУ и потребителем – не свыше 4-х. Без учета этого качественное функционирование изделий не гарантировано

Тут уместно вспомнить закон Ома, и сразу все становится понятно. Дело в том, что для нормальной работы любой установки (прибора, механизма), к которой подводится напряжение, его падение на линии не должно быть более 2 % (для кабелей сечением до 16 «квадратов»). На участке между ВРУ и потребителем – не свыше 4-х. Без учета этого качественное функционирование изделий не гарантировано.

Для расчетов есть специальные онлайн-калькуляторы. В пояснительной записке по правилам их использования указывается, какие исходные данные требуется ввести. Это значительно облегчает задачу.

Для тех, кто не сможет по какой-то причине воспользоваться данной услугой, можно привести формулу, по которой несложно произвести вычисления.

ΔU=(PRL+QXL)/U

Все величины должны быть в одной системе. Как правило, это международная, называемая СИ. С ней работать привычнее, а значит, удобнее.

  • U (В) – напряжение источника питания (220 или 380).
  • P (Вт) – мощность суммарной нагрузки.
  • R (Ом/м) – удельное сопротивление. Эту характеристику для конкретного металла жил можно найти в справочной литературе.
  • X – то же, но индуктивное.
  • L (м) – длина присоединяемого кабеля.
  • Q (ВАр) – мощность реактивная, так как напряжение – переменное.

Некоторые данные отражены в паспорте на подключаемое изделие, поэтому их нужно учитывать. К примеру, для двигателя – это в первую очередь cosφ. Именно эта характеристика используется при расчете реактивной мощности (U х I х cosφ).

Примечание:

  • При расчете для линии 1 ф результат следует удвоить. Это связано с тем, что электрический ток проходит по 2-м жилам – фазе и нулю.
  • При ∆U больше допустимого придется менять схему подключения. Как вариант – прокладка двух параллельных кабелей от одного источника.

Напряжение и падение напряжения: сравнительный анализ —

By Кошики Банерджи

В этой статье показаны ключевые различия между напряжением и падением напряжения. Мы часто называем напряжение и падение напряжения одними и теми же объектами. Но дело в том, что они разные и обладают уникальными атрибутами.

Вот основные различия между напряжением и падением напряжения.

параметрынапряжениеПадение напряжения
ОпределениеНапряжение — это электрическое давление, которое заставляет заряженные электроны течь из одного места в другое через проводящий материал. Мы также можем сказать, что напряжение — это разность электрических потенциалов между двумя точками цепи.Падение напряжения также является величиной, связанной с напряжением, но это не совсем то же самое, что и напряжение. Падение напряжения — это разность потенциалов, возникающая при наличии какого-либо препятствия в цепи, такого как резистор, катушка индуктивности или конденсатор. Это потерянное напряжение.
Значение в DCВ однонаправленном постоянном токе, согласно закону Ома, напряжение является простым произведением силы тока и сопротивления. Постоянное напряжение постоянно.Падение постоянного напряжения — это разность потенциалов от одной точки к другой, когда постоянный ток проходит через какой-либо резистивный компонент между точками. 
Значение в переменном токеПеременный ток течет в двух направлениях или меняет свою полярность в течение определенного периода времени. Из-за этого изменения периодически менялось и напряжение. Это произведение тока и импеданса.Концепция падения напряжения переменного тока аналогична падению напряжения постоянного тока. Точно так же, как напряжение переменного тока, падение напряжения переменного тока учитывает импеданс в цепи, а не только сопротивление.
РасчетНапряжение рассчитывается по закону Ома путем умножения силы тока и сопротивления. В емкостных и индуктивных цепях наряду с сопротивлением учитываются также емкость и индуктивность.Расчет падения напряжения аналогичен расчету напряжения, поскольку он является частью самого напряжения. Просто в цепи падение напряжения относится только к падениям, происходящим из-за реактивных сопротивлений, но не к напряжению питания или источника.
Анализ эффективностиНапряжение измеряется аналоговым или цифровым вольтметром или мультиметром.  Поскольку падение напряжения представляет собой часть чистого напряжения, оно измеряется тем же прибором, который используется для измерения напряжения.

Когда напряжение и падение напряжения могут совпадать?

Напряжение и падение напряжения немного отличаются друг от друга. Когда мы говорим о зависимости напряжения от падения напряжения на любом компоненте, таком как резистор, конденсатор или катушка индуктивности в цепи, это то же самое, что и напряжение на нем. 

Предположим, есть два резистора в последовательной конфигурации. В цепь подается напряжение источника. Напряжение — это напряжение питания, а также напряжения через отдельные резисторы. Но отдельные напряжения будут единственными падениями напряжения в цепи. Это относится как к цепям постоянного тока, так и к цепям переменного тока, таким как цепи RC, LR или RLC.

Напряжение и падение напряжения: часто задаваемые вопросы

Электрический потенциал против напряжения

Электрический потенциал известен как энергия на единицу заряда, полученная или потерянная, когда любой заряд течет из определенной точки с нулевым электрическим потенциалом. Напряжение – это разность потенциалов между любыми двумя точками.

Возьмем пример. Предположим, что потенциал произвольной точки P относительно фиксированной точки B равен 100 вольт, а потенциал точки Q называется 120 вольт. Тогда напряжение или разность потенциалов между точками P и Q составляет (120-100) = 20 вольт. Здесь 100 вольт и 120 вольт — это электрические потенциалы, а 20 вольт — это напряжение. 

Каковы причины падения напряжения в цепи?

Напряжение — очень важное свойство заряда. Это движущая сила, которая перемещает электроны из одной точки в другую и меняет величину

Падение напряжения обычно вызвано влиянием резисторов, конденсаторов и катушек индуктивности в цепи. Когда ток протекает через замкнутую цепь, в которой есть эти реактивные элементы, напряжение питания уменьшается, когда ток встречается с любым элементом. Чем больше реактивное сопротивление, тем больше падение напряжения.

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

ЗначениеФормула
Базовый расчёт напряжения на участке цепиU=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного токаU=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

ЗначениеФормула
Расчет сопротивления одного элементаR=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводникаR=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Потеря напряжения

Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди;  длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В .

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия.

По справочнику выбираем имеющееся сечение 25 мм². Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди.

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В .

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r – сопротивление внутренней цепи в омах, U – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

E = U + U = I × r + I × r = I × (r + r),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

U = I × r = 0,6 × 0,5 = 0,3 В.

Так как E = U + U, то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

откуда

E = I × (r + r) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает: а) при замкнутой электрической цепи – напряжение сети; б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r элемента и внутреннее падение напряжения U.

Так как r = 2,7 Ом, то

r = 3,6 – 2,7 = 0,9 Ом ;

U = I × r = 0,5 × 0,9 = 0,45 В .

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U) в зависимости от изменения внешнего сопротивления (r) при неизменных э. д. с. (E) и внутреннем сопротивлении (r) источника энергии.

Таблица 3

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r

ErrU = I × rU = I × r
2 2 20,5 0,5 0,52 1 0,50,8 1,33 20,4 0,67 11,6 1,33 1

Для того чтобы производить подобные вычисления в электротехнике, необходимо владеть познаниями в области высшей математики. Но всё начинается с малого, с её основ, со средней школы. Если вы заканчиваете школу, готовитесь к экзамену и последующему поступлению в ВУЗ, вам полезно бы знать каков проходной бал. В этом вам поможет шкала перевода профильных баллов ЕГЭ по математике в 2021 году. Учитесь лучше, и тогда вам откроются все дороги к профессии электротехники.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников. Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ).

К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы. Такие элементы и цепи, в которых они используются, называют нелинейными.

Практическое использование

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Применяем закон к любому участку цепи.

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.

Находим силу тока

Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА). Вычисление напряжения Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим. Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении

Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод по выбору сечения провода для постоянного напряжения:

Чем короче и толще провод, по которому течет постоянный ток, тем меньше падение напряжения на нём, тем лучше. То есть, потеря напряжения в проводах минимальна.

Если смотреть на таблицу 2, нужно выбирать значения сверху-справа, не переходя в «синюю» зону.

Для переменного тока ситуация та же, но вопрос не стоит столь остро — там мощность передается за счет повышения напряжения и понижения тока. См. формулу (1).

В заключение — таблица, в которой падение постоянного напряжения задано пределом 2% , а напряжение питания равно 12 В.  Искомый параметр — максимальная длина провода.

Внимание! Имеется ввиду двухпроводная  линия, например кабель, содержащий 2 провода. То есть, тот случай, когда через кабель длиной 1 м ток делает путь 2 м, туда-сюда

Я привёл этот вариант, т.к. он чаще всего встречается на практике. Для одного провода, чтобы узнать падение на нём напряжения, надо число внутри таблицы умножить на 2. Спасибо внимательным читателям!

Таблица 3. Максимальная длина провода для падения постоянного напряжения 2%.

S,мм²

I,A

11,52,546101625355075100
1710,9117,6528,5742,8670,6109,1176,5244,9
23,535,458,8214,2921,435,354,588,2122,4171,4
41,762,734,417,1410,717,627,344,161,285,7130,4
61,181,822,944,767,111,718,229,440,857,187117,6
80,881,362,23,575,48,813,62230,642,965,2588,2
100,7111,762,864,37,110,917,724,534,352,270,6
150,731,181,92,94,77,311,816,322,934,847,1
200,881,432,13,55,58,812,217,126,135,3
251,141,72,84,47,19,813,720,928,2
301,42,43,65,98,211,417,423,5
401,82,74,46,18,51317,6
502,23,54,96,910,414,1
1001,72,43,45,27,1
1502,33,54,7
2002,63,5

Наша полторашка по этой таблице может иметь длину только 1 метр. Падать на ней будет 2%, или 0,24В. Проверяем по формуле (4) — всё сходится.

Если напряжение выше (например, 24 В постоянного тока), то и длина может быть соответственно больше (в 2 раза).

Всё вышесказанное относится не только к постоянному, но и вообще к низкому напряжению. И при выборе площади сечения в таких случаях следует руководствоваться не только нагревом провода, но и падением напряжения на нём. Например, при питании галогенных ламп через понижающий трансформатор.

Прошу прокомментировать статью, у кого как теория совпадает с практикой?

Поделитесь в социальных сетях:FacebookX
Напишите комментарий