Задача аэродинамического расчета систем вентиляции

Этап третий: увязка ответвлений

Когда проведены все необходимые расчёты необходимо произвести увязку нескольких ответвлений. Если система обслуживает один уровень, то увязывают ответвления не входящие в магистраль. Расчёт проводят в том же порядке, что и для основной линии. Результаты заносятся в таблицу. В многоэтажных зданиях для увязки используются поэтажные ответвления на промежуточных уровнях.

Критерии увязки

Здесь сопоставляются значения суммы потерь: давления по увязываемым отрезкам с параллельно присоединённой магистралью. Необходимо чтобы отклонение составляло не более 10 процентов. Если установлено, что расхождение больше, то увязку можно проводить:

  • путём подбора соответствующих размеров сечения воздуховодов;
  • при помощи установки на ответвлениях диафрагм или дроссельных клапанов.

Иногда для проведения подобных расчётов необходим всего лишь калькулятор и пара справочников. Если же требуется провести аэродинамический расчёт вентиляции больших зданий или производственных помещений, то понадобится соответствующая программа. Она позволит быстро определить размеры сечений, потери давления как на отдельных отрезках, так и во всей системе в целом.

https://www.youtube.com/watch?v=v6stIpWGDow Video can’t be loaded: Проектирование систем вентиляции. (https://www.youtube.com/watch?v=v6stIpWGDow)

Комментариев:

  • Исходные данные для вычислений
  • С чего начинать? Порядок вычислений

Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Типы воздуховодов

Воздуховоды – это элементы системы, отвечающие за перенос отработанного и свежего воздуха. В состав входят основные трубы переменного сечения, отводы и полуотводы, а также разнообразные переходники. Различаются по материалу и форме сечения.

От типа воздуховода зависит область применения и специфика движения воздуха. Существует следующая классификация по материалу:

  1. Стальные – жёсткие воздуховоды с толстыми стенками.
  2. Алюминиевые – гибкие, с тонкими стенками.
  3. Пластиковые.
  4. Матерчатые.

По форме сечения подразделяются на круглые разного диаметра, квадратные и прямоугольные.

Методика расчёта

Самый распространенный вариант, когда оба параметра — сила напора и площадь сечения — неизвестны. В этом случае каждый из них определяется отдельно, с применением своих формул.

Скорость

Она необходима для получения параметров динамического давления на проектируемом участке. Надо помнить, что расход воздуха известен заранее, причем, не для всей системы, а для каждого участка. Измеряется в м/с.

υ фак = L/(3600×Fф), где

L — расход воздуха на исследуемом участке, м3/ч

Давление

Вентиляционная система делится на отдельные ветки (участки) по местам изменения расхода воздуха или изменениям площади сечения. Каждый нумеруется. Естественное располагаемое давление определяется по формуле:

Δре = h .g ( ρн –ρвн), где

h – разница при подъёме между верхней и нижней точкой ρн и ρвн – плотность внутри/снаружи

Плотности определяются с использованием параметров перепада температуры воздуха внутри и наружи помещения. Они указаны в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование». Далее берётся формула:

Σ(R . L .βш +Z) ≤Δ ре, где

Σ(R . L .βш +Z) – сумма расхода давления на рассматриваемом участке, где

R – удельные потери от трения (Па/м); L – длина рассматриваемого участка (м); βш – коэффициент шероховатости стенок вентканалов; Z – потери давления в местных сопротивлениях; Δре – естественное располагаемое давление.

Подбор заканчивается, когда размер сечения воздушного канала удовлетворяет условию формулы. Возможные варианты размеров представлены в таблицах:

Важно заложить небольшой запас по давлению, будет вполне достаточно 5-10%. Подбор воздуховода ведётся по специальным таблицам. Если необходим квадратного или прямоугольного сечения, то его приводят по формуле эквивалента круглого канала:

Если необходим квадратного или прямоугольного сечения, то его приводят по формуле эквивалента круглого канала:

Подбор воздуховода ведётся по специальным таблицам. Если необходим квадратного или прямоугольного сечения, то его приводят по формуле эквивалента круглого канала:

dэкв= 2а . в /(а+в), где

а,в – геометрические размеры канала, см

Аэродинамическое сопротивление воздуховодов таблица. Порядок аэродинамического расчета механических систем вентиляции

Чтобы определиться с размерами сечений на любом из отрезков воздухораспределительной системы, необходимо произвести аэродинамический расчет воздуховодов. Показатели, полученные при таком расчёте, определяют работоспособность как всей проектируемой системы вентиляции, так и отдельных её участков.

Для создания комфортных условий в кухне, отдельной комнате или помещении в целом необходимо обеспечить правильную проектировку воздухораспределительной системы, которая состоит из множества деталей

Важное место среди них занимает воздуховод, определение квадратуры которого оказывает влияние на значение скорости воздушного потока и шумность вентиляционной системы в целом. Определить эти и ряд других показателей позволит аэродинамический расчет воздуховодов

Расчёт приточной системы вентиляции

Аэродинамический расчет вентиляционной системы производят для:

1) подбора размеров поперечного сечения воздуховодов по рекомендуемым скоростям движения воздуха;

2) определения потерь давления в системе.

Рекомендуемые скорости движения воздуха в системах вентиляции с механическим побуждением для промышленных зданий следующие:

нрек=12м/с – магистраль;

нрек=6м/с – ответвления;

нрек – зависит от типа воздухораспределителя.

Аэродинамический расчет систем вентиляции состоит из двух этапов:

1) расчет участков основного направления (наиболее протяженного и нагруженного);

2) увязка всех остальных ответвлений системы.

Расчет участков основного направления

Расчет участков основного направления. Необходимо вычертить аксонометрическую схему воздуховодов (графическая часть), вентиляционную систему разбить на участки, На участках определить расход воздуха L, м3/ч. По расходу и рекомендуемым скоростям подбирают диаметры круглых воздуховодов, при этом необходимо давать 10% запаса по скорости.

К установке принимается воздуховод с площадью ближайшей к требуемой Fтр. Необходимо определить фактическую скорость движения воздуха в воздуховоде, м/с

Потери давления в системах вентиляции складываются из потерь давления на трение и потерь давления в местных сопротивлениях, Па

(13.1.1

Потери давления на трение, Па

(13.1.2)

где R-удельные потери давления на трение, Па/м,;

l – длина участка воздуховода, м;

n – поправочный коэффициент, который зависит от абсолютной эквивалентной шероховатости воздуховодов kэ воздуховодов и скорости движения воздуха, . Абсолютная эквивалентная шероховатость поверхности воздуховодов из стали kэ=1мм.

Удельные потери давления на трение, Па/м, в круглых воздуховодах определяются по формуле:

(13.1.3)

где л- коэффициент гидравлического сопротивления трения;

d- диаметр воздуховода, м

– динамическое давление, Па.

Коэффициент сопротивления трения л рассчитывается по формуле Альтшуля:

(13.1.4)

где kэ– абсолютная эквивалентная шероховатость поверхности воздуховода;

Re- критерий Рейнольдса:

(13.1.5)

где – скорость движения воздуха в воздуховоде, м/с;

– кинематическая вязкость воздуха, м2/с.

Динамическое давление, Па

(13.1.6)

где – плотность воздуха, кг/м3.

При аэродинамическом расчете используют таблицу 22.15 , в которой на основании формул (13.3)-(13.6) определены удельные потери давления на трение R, Па/м; расход воздуха L, м3/ч, при различных скоростях для различных диаметров круглых металлических воздуховодов.

Потери давления в местных сопротивлениях, Па

(13.1.7)

где – сумма коэффициентов местных сопротивлений на расчетном участке воздуховода. Значения коэффициентов местных сопротивлений сведены в таблицы. Тройники, находящиеся на границе двух участков, следует относить к участкам с меньшим расходом.

Расчет воздухозаборных решеток

Скорость в воздухозаборных решетках vр?5м/с, принимаем vр=5м/с.

Площадь живого сечения для прохода воздуха:

м2,

Принимаем к установке решетку АРН компании «Арктос» с размерами 1550Ч1950 и площадью живого сечения fp=1,449 м2. По номограмме, приведенной в каталоге этой компании приведены номограммы, по которым можно определить потери давления в воздухозаборных решетках и скорость воздуха.

Для данной решетки ДР=32Па,

Действительная скорость в воздухозаборных решетках:

м/с.

Все расчеты сведены в таблицу 10.1.1:

Таблица 10.1: Аэродинамический расчёт приточной системы П1

№ уч

L, мі/ч

l, м

d(dэкв), мм

v, м/с

R, Па/м

Д Ртр, Па

Рд, Па

Z, Па

Д Ртр+Z

?(Д Ртр+Z)

Примечания

1

2

3

6

7

8

10

11

12

13

14

15

ВПК1

12965

4,95

0,00

14,70

1,6

23,52

23,52

23,52

1

12965

3,8

900

5,66

0,41

1,56

19,25

1,31

25,21

26,77

50,30

пов.900+тр. на отв.

2

25930

13,5

900

11,33

1,135

15,28

76,99

0,42

32,34

47,61

97,91

2 поворота 900

АРН

25930

4,97

32,00

129,91

В виду симметрии системы проводить увязку ответвления нет необходимости.

Фасонные воздуховоды

Фасонные воздуховоды — отдельный вид воздуховодов нестандартных размеров и формы. Это могут быть прямоугольные и круглые изделия нестандартного сечения (например, диаметром 175 мм или сечением 525×320 мм).

Кроме того, к фасонным воздуховодам (синонимы — фасонные изделия или фасонные части воздуховодов) относят отводы, тройники, соединители, фланцы, переходы и другие изделия. Фасонные части воздуховодов могут быть как стандартных размеров, так и выполнены под заказ. Чаще всего такая потребность возникает при обходе ригелей, колонн и иных препятствий при монтаже воздуховодов на объекте.

Как рассчитать давление в вентиляционной сети

Для того чтобы определить предполагаемое давление для каждого отдельного участка, необходимо воспользоваться приведенной ниже формулой:

Н х g (РН – РВ) = DPE.

Теперь попытаемся разобраться, что обозначает каждая из этих аббревиатур. Итак:

  • Н в данном случае обозначает разницу в отметках шахтного устья и заборной решетки;
  • РВ и РН – это показатель плотности газа, как снаружи, так и изнутри вентиляционной сети, соответственно (измеряется в килограммах на кубический метр);
  • наконец, DPE – это показатель того, каким должно быть естественное располагаемое давление.

Продолжаем разбирать аэродинамический расчет воздуховодов. Для определения внутренней и наружной плотности необходимо воспользоваться справочной таблицей, при этом должен быть учтен и температурный показатель внутри/снаружи. Как правило, стандартная температура снаружи принимается как плюс 5 градусов, причем вне зависимости от того, в каком конкретном регионе страны планируются строительные работы. А если температура снаружи будет более низкой, то в результате увеличится нагнетание в вентиляционную систему, из-за чего, в свою очередь, объемы поступающих воздушных масс будут превышены. А если температура снаружи, напротив, будет более высокой, то давление в магистрали из-за этого снизится, хотя данную неприятность, к слову, вполне можно компенсировать посредством открывания форточек/окон.

Что же касается главной задачи любого описываемого расчета, то она заключается в выборе таких воздуховодов, где потери на отрезках (речь идет о значении ?(R*l*?+Z)) будут ниже текущего показателя DPE либо, как вариант, хотя бы равняться ему. Для пущей наглядности приведем описанный выше момент в виде небольшой формулы:

DPE ? ?(R*l*?+Z).

Теперь более детально рассмотрим, что обозначают использованные в данной формуле аббревиатуры. Начнем с конца:

  • Z в данном случае – это показатель, обозначающий снижение скорости движения воздуха вследствие местного сопротивления;
  • ? – это значение, точнее, коэффициент того, какова шероховатость стенок в магистрали;
  • l – еще одно простое значение, которое обозначает длину выбранного участка (измеряется в метрах);
  • наконец, R – это показатель потерь на трение (измеряется в паскалях на один метр).

Что же, с этим разобрались, теперь еще выясним немного о показателе шероховатости (то есть ?). Этот показатель зависит только от того, какие материалы были использованы при изготовлении каналов. Стоит отметить, что скорость перемещения воздуха также может быть разной, поэтому следует учитывать и этот показатель.

Скорость – 0,4 метра за секунду

В таком случае показатель шероховатости будет следующим:

  • у штукатурки с применением армирующей сетки – 1,48;
  • у шлакогипса – около 1,08;
  • у обычного кирпича – 1,25;
  • а у шлакобетона, соответственно, 1,11.

С этим все понятно, идем дальше.

Скорость – 0,8 метра за секунду

Здесь описываемые показатели будут выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки – 1,69;
  • для шлакогипса – 1,13;
  • для обыкновенного кирпича – 1,40;
  • наконец, для шлакобетона – 1,19.

Немного увеличим скорость воздушных масс.

Скорость – 1,20 метра за секунду

Для этого значения показатели шероховатости будут такими:

  • у штукатурки с применением армирующей сетки – 1,84;
  • у шлакогипса – 1,18;
  • у обычного кирпича – 1,50;
  • и, следовательно, у шлакобетона – где-то 1,31.

И последний показатель скорости.

Скорость – 1,60 метра за секунду

Здесь ситуация будет выглядеть следующим образом:

  • для штукатурки с применением армирующей сетки шероховатость будет составлять 1,95;
  • для шлакогипса – 1,22;
  • для обыкновенного кирпича – 1,58;
  • и, наконец, для шлакобетона – 1,31.

Обратите внимание! С шероховатостью разобрались, но стоит отметить еще один важный момент: при этом желательно учитывать и незначительный запас, колеблющийся в пределах десяти-пятнадцати процентов

Расчет скорости воздуха в воздуховоде по формуле и таблицам

В этой статье мы дадим ответ на вопрос — как правильно рассчитать скорости течения воздуха в воздуховодах различной формы.

Здесь приведены формулы расчета скорости воздуха и давления в воздуховоде (круглого или прямоугольного сечения) в зависимости от расхода воздуха и площади сечения. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Q — расход воздуха, м3/час

S — площадь сечения воздуховода, м2

Простой способ расчета скорости воздуха в воздуховоде

Для расчета величины скорости воздуха нужно объем перемещаемого воздуха в м3/ч разделить на 3600 (количество секунд в часе) и разделить на площадь сечения воздуховода, либо введите значения в поля ниже.

Примеры расчета скорости воздуха в квадратном воздуховоде

Пример № 1 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,2 = 0,69 м/с

Пример № 2 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,2 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде прямоугольного сечения

Пример № 3 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод прямоугольный  200 мм на 400 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,4 = 0,35 м/с

Пример № 4 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 1,74 м/с

Пример № 5 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод квадратный 200 мм на 400 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,4 = 3,47 м/с

Примеры расчета скорости воздуха воздуховоде круглого сечения

Пример № 6 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод круглый диаметром  200 мм

Скорость воздуха равна 100 / 3600 / (3,14 * 0,2 * 0,2/4)  = 0,88 м/с

Пример № 7 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод круглый диаметром  300 мм

Скорость воздуха равна 500 / 3600 / (3,14 * 0,3 * 0,3/4)  = 1,96 м/с

Пример № 8 расчета скорости воздуха:

  • объем перемещаемого воздуха = 1000 м3
  • воздуховод круглый диаметром  400 мм

Скорость воздуха равна 1000 / 3600 / (3,14 * 0,4 * 0,4/4)  = 2,21 м/с

Готовые таблицы определения скорости воздуха в воздуховоде

Для определения расчетной скорости воздуха в воздуховодах можно использовать готовые таблицы. Такие таблицы не сложно найти в открытых источниках информации. Скоростные характеристики важны для расчета эффективности работы системы вентиляции.

  • Таблица расчета скорости течения воздуха в круглом воздуховоде.
  • Таблица расчета скорости течения воздуха в прямоугольном воздуховоде.

Рекомендуемая скорость воздуха в вентиляционных воздуховодах

Скорость движения воздушных масс в каналах не ограничивается и не нормируется, ее следует принимать по результатам расчета, руководствуясь соображениями экономической целесообразности.

Рекомендуемая скорость воздуха для различных систем вентиляции:

  • для общеобменных систем вентиляции с сечением воздуховодов до 600×600 — менее 4 м/с;
  • для систем вентиляции с сечением воздуховодов более 600×600 — менее 6 м/с;
  • для систем дымоудаления и специфических систем вентиляции — менее 10 м/с..

Правильный расчет скорости воздуха позволяет построить эффективную систему вентиляции!

Виды воздуховодов

Прямоугольные воздуховоды представляют собой прямоугольные или квадратные элементы в различных размерах. Они используются, когда необходимо переносить большой объем воздуха при сравнительно низкой скорости.

Круглые воздуховоды используются в помещениях с низкими требованиями к вентиляции, таких как жилые дома или небольшие офисы. Они хорошо переносят воздух с высокой скоростью, но имеют ограниченный объем воздуха, который они могут переносить.

Овальные воздуховоды находят широкое применение в промышленных зданиях, например, на заводах. Они позволяют перемещать большой объем воздуха при сравнительно высокой скорости, но занимают меньше пространства по сравнению с прямоугольными воздуховодами.

Гибкие воздуховоды представляют собой гибкие трубы, которые используются для связи между компонентами системы вентиляции. Они удобны в эксплуатации и могут быть установлены в труднодоступных местах.

Примеры видов воздуховодов
Вид воздуховодаПрименение
ПрямоугольныйБольшие здания с высокой потребностью в вентиляции
КруглыйЖилые дома, офисы и помещения с низкими требованиями к вентиляции
ОвальныйПромышленные здания с большим объемом воздуха, требующие быстрого перемещения
ГибкийНебольшие помещения и труднодоступные места

Расчет воздуховодов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Виды воздуховодов

Прямоугольный вытяжной вентиляционный канал

Современные воздуховоды можно классифицировать по нескольким параметрам: способ монтажа, материал изготовления, форма сечения.

По установке различают внешние и встроенные каналы. Первые устанавливаются поверх стен и видны глазу. Внутренне монтируется в стены и конструкцию дома.

Материал трубы может быть разным. Это различные металлы (медь, сталь, алюминий) и пластик. Изделия из металла отличаются своей прочностью и надежностью, но их монтаж сложнее. Сборка пластиковых блоков проще, но они не используются при высоких температурах.

Сечение может быть прямоугольным или круглым. Прямоугольные трубы универсальны, но в углах могут создаваться завихрения. Круглые модели лишены такого недостатка.

Соединительные элементы — фитинги

Пластиковые фитинги помогут собрать магистраль нужной конфигурации. Для соединения труб или коробов, поворота магистрали под нужным углом используют следующие фитинги для вентиляции»

  1. Прямой угол под 90 градусов.
  2. Угол поворота на 45 градусов.
  3. Тройниковое ответвление под 90 или 45 градусов.
  4. Крестовина.
  5. Соединительная муфта.

В каталоге фитингов различных производителей имеются различные сборочные компоненты, позволяющие составить любую вентиляционную трассу. Например, для подключения вытяжки, расположенной над кухонной плитой, необходимо повернуть канал вентиляции под прямым углом, пользуясь угловым отводом. Далее прямой участок трубы нужно повернуть в сторону отверстия вытяжной шахты. Для этого используют поворотный соединительный элемент.

Основные формулы аэродинамического расчета

После определения нужного количества воздуха проходящего по вентиляционной системе, можно проводить аэродинамический расчет и проектировать размещение воздуховодов.

Для того чтобы провести расчет, нужно сделать:

  • Чертеж аксонометрической схемы, на которой будут указаны все перечисления, а также размеры элементов вентиляционной системы.
  • Определить длину воздухопроводов.
  • Разделить систему на одинаковые участки и определить расход воздуха.

После всех вычислений нужно выбрать основную магистраль. Как правило, это самый длинный участок. Нумерация определяется от самого дальнего участка. После занесения данных в таблицу, следует подобрать форму поперечного сечения. Его площадь рассчитывают по формуле.

FP=LP/VT

Где первое значение является площадью поперечного сечения, второе – расходуемым воздухом на участке, а третье – скоростью передвижения газа.

После нахождения величины нужно подобрать воздуховод, подходящий к вычислениям и провести расчет скорости движения происходящей на данном участке.

VФ=LP/FФ

Где FФ считается фактической площадью сечения.

Таким образом, при проектировании вентиляционной системы, дабы застраховать себя от ряда целых неприятностей обязательно нужно производить аэродинамический расчет.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий